Trong không gian Oxyz, cho bốn điểm \(A\left( 3;0;0 \right),\text{ }B\left( 0;2;0 \right),\text{ }C\left( 0;0;6 \right)\) và \(D\left( 1;1;1 \right).\) Gọi \(\Delta \) là đường thẳ...

Câu hỏi :

Trong không gian Oxyz, cho bốn điểm \(A\left( 3;0;0 \right),\text{ }B\left( 0;2;0 \right),\text{ }C\left( 0;0;6 \right)\) và \(D\left( 1;1;1 \right).\) Gọi \(\Delta \) là đường thẳng đi qua D và thỏa mãn tổng khoảng cách từ các điểm \(A,\text{ }B,\text{ }C\) đến \(\Delta \) là lớn nhất, hỏi \(\Delta \) đi qua điểm nào trong các điểm dưới đây?

A. \(M\left( {5;7;3} \right).\)

B. \(M\left( {3;4;3} \right).\)

C. \(M\left( {7;13;5} \right).\)

D. \(M\left( { - 1; - 2;1} \right).\)

* Đáp án

A

* Hướng dẫn giải

Phương trình mặt phẳng \(\left( ABC \right)\) là \(\frac{x}{3}+\frac{y}{2}+\frac{z}{6}=1\Leftrightarrow 2x+3y+z-6=0\).

Dễ thấy \(D\in \left( ABC \right)\). Gọi H,K,I lần lượt là hình chiếu của A,B,C trên \(\Delta \).

Do \(\Delta \) là đường thẳng đi qua D nên \(AH\le AD,BK\le BD,CI\le CD\).

Vậy để khoảng cách từ các điểm \(A,B,\,C\) đến \(\Delta \) là lớn nhất thì \(\Delta \) là đường thẳng đi qua D và vuông góc với \(\left( ABC \right)\). Vậy phương trình đường thẳng \(\Delta \) là \(\left\{ \begin{align} & x=1+2t \\ & y=1+3t \\ & z=1+t \\ \end{align} \right.\,\left( t\in \mathbb{R} \right)\). Kiểm tra ta thấy điểm \(M\left( 5;7;3 \right)\in \Delta .\)

Copyright © 2021 HOCTAP247