Cho số phức z thoả mãn \(\left| z-3+4i \right|=2,\text{w}=2z+1-i.\) Khi đó \(\left| \text{w} \right|\) có giá trị lớn nhất là:

Câu hỏi :

Cho số phức z thoả mãn \(\left| z-3+4i \right|=2,\text{w}=2z+1-i.\) Khi đó \(\left| \text{w} \right|\) có giá trị lớn nhất là:

A. \(4 + \sqrt {130} \)

B. \(2 + \sqrt {130} \)

C. \(4 + \sqrt {74} \)

D. \(16 + \sqrt {74} \)

* Đáp án

A

* Hướng dẫn giải

Đặt \(\text{w}=x+yi\Rightarrow z=\frac{\text{w}-1+i}{2}=\frac{x-1+\left( y+1 \right)i}{2}.\)

\(\left| z-3+4i \right|=2\Leftrightarrow \left| \frac{\left( x-7 \right)+\left( y+9 \right)i}{2} \right|=2\Leftrightarrow \sqrt{{{\left( x-7 \right)}^{2}}+{{\left( y+9 \right)}^{2}}}=4\Leftrightarrow {{\left( x-7 \right)}^{2}}+{{\left( +9 \right)}^{2}}=16.\)

=>Tập hợp điểm biểu diễn số phức w là đường tròn tâm \(I\left( 7;-9 \right)\) bán kính R=4.

Khi đó \(\left| \text{w} \right|\) có giá trị lớn nhất là \(OI+R=4+\sqrt{130}\)

Copyright © 2021 HOCTAP247