A. m = 1
B. m = -1
C. m = \(\dfrac{1}{2}\)
D. m = 0
D
Ta có:
\(z = \dfrac{{i - m}}{{1 - m\left( {m - 2i} \right)}}\)
\(\;\;\;= \dfrac{{i - m}}{{1 - {m^2} + 2mi}} = \dfrac{{i - m}}{{ - {{\left( {i - m} \right)}^2}}} \)
\(\;\;\;= \dfrac{1}{{m - i}} = \dfrac{{m + i}}{{{m^2} + 1}}\)
Khi đó \(\left| z \right| = \sqrt {\dfrac{{{m^2} + 1}}{{{{\left( {{m^2} + 1} \right)}^2}}}} = \sqrt {\dfrac{1}{{{m^2} + 1}}} \le 1\)
Dấu bằng xảy ra khi và chỉ khi \(m = 0\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247