Cho số phức \(z = \dfrac{{i - m}}{{1 - m\left( {m - 2i} \right)}}\,\,(m \in R)\). Giá trị của m để |z| lớn nhất là :

Câu hỏi :

Cho số phức \(z = \dfrac{{i - m}}{{1 - m\left( {m - 2i} \right)}}\,\,(m \in R)\). Giá trị của m để |z| lớn nhất là :

A. m = 1

B. m = -1

C. m = \(\dfrac{1}{2}\)

D. m = 0

* Đáp án

D

* Hướng dẫn giải

Ta có:

\(z = \dfrac{{i - m}}{{1 - m\left( {m - 2i} \right)}}\)

\(\;\;\;= \dfrac{{i - m}}{{1 - {m^2} + 2mi}} = \dfrac{{i - m}}{{ - {{\left( {i - m} \right)}^2}}} \)

\(\;\;\;= \dfrac{1}{{m - i}} = \dfrac{{m + i}}{{{m^2} + 1}}\)

Khi đó \(\left| z \right| = \sqrt {\dfrac{{{m^2} + 1}}{{{{\left( {{m^2} + 1} \right)}^2}}}}  = \sqrt {\dfrac{1}{{{m^2} + 1}}}  \le 1\)

Dấu bằng xảy ra khi và chỉ khi \(m = 0\)

Copyright © 2021 HOCTAP247