A. \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} g\left( {\left| {x + 3} \right| - 4} \right) = g\left( { - 3} \right)\)
B. \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} g\left( {\left| {x + 3} \right| - 4} \right) = \frac{{g\left( { - 3} \right) + g\left( 1 \right)}}{2}\)
C. \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} g\left( {\left| {x + 3} \right| - 4} \right) = g\left( { - 1} \right)\)
D. \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} g\left( {\left| {x + 3} \right| - 4} \right) = g\left( 1 \right)\)
C
Ta có \(g'\left( x \right) = f'\left( x \right) - {x^2} - \frac{3}{2}x + \frac{3}{2}\)
\(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = {x^2} + \frac{3}{2}x - \frac{3}{2} \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 1 \end{array} \right.\)
Lập bảng biến thiên
Dựa vào bảng biến thiên, ta có: \(\underset{\left[ -3;1 \right]}{\mathop{\min }}\,g\left( x \right)=g\left( -1 \right)\).
Đặt \(t=\left| x+3 \right|-4\) với \(x\in \left[ -2;2 \right]\) thì \(t\in \left[ -3;1 \right]\).
Khi đó \(\underset{\left[ -2;2 \right]}{\mathop{\min }}\,g\left( \left| x+3 \right|-4 \right)=\underset{\left[ -3;1 \right]}{\mathop{\min }}\,g\left( t \right)=g\left( -1 \right)\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247