A. 5!2!
B. 7!
C. 5! - 2!
D. 5! + 2!
A. 3
B. 27
C. 9
D. -3
A. (1;3)
B. (-1;1)
C. (-2;-1)
D. (3;4)
A. x = -1
B. x = 1
C. x = 3
D. x = 0
A. 4
B. 1
C. 2
D. 3
A. \(x = \frac{1}{2}\)
B. \(y = \frac{-1}{2}\)
C. \(y = \frac{1}{2}\)
D. y = 5
A. \(y = {x^3} - 3{x^2} + 1\)
B. \(y = - {x^3} + 3{x^2} + 1\)
C. \(y = - {x^4} + 2{x^2} + 1\)
D. \(y = {x^4} - 2{x^2} + 1\)
A. 0
B. 1
C. 2
D. 3
A. \(5 + 2{\log _2}a\)
B. \(5{\left( {{{\log }_2}a} \right)^2}\)
C. \(5 + {\log _2}a\)
D. \(5 - 2{\log _2}a\)
A. \(\frac{1}{x}\)
B. \(\frac{2}{x}\)
C. \(2.\ln 2x\)
D. \(\ln 2x\)
A. a5
B. a6
C. a8
D. a9
A. x = 2
B. x = 2;x = 3
C. x = 3
D. x = - 2;x = - 3
A. x = 2
B. x = 7
C. \(x = \frac{{11}}{2}\)
D. \(x = \frac{{35}}{4}\)
A. \(\int {f\left( x \right)} {\rm{d}}x = {x^5} + 2{x^2} - 4x + C\)
B. \(\int {f\left( x \right)} {\rm{d}}x = \frac{1}{5}{x^5} - {x^2} - 4x + C\)
C. \(\int {f\left( x \right)} {\rm{d}}x = \frac{1}{5}{x^5} + {x^2} - 4x + C\)
D. \(\int {f\left( x \right)} {\rm{d}}x = 4{x^3} + C\)
A. \(\int {f\left( x \right){\rm{d}}x} = \frac{1}{4}\tan 4x + C\)
B. \(\int {f\left( x \right){\rm{d}}x} = - \frac{1}{4}\tan 4x + C\)
C. \(\int {f\left( x \right){\rm{d}}x} = 4\tan 4x + C\)
D. \(\int {f\left( x \right){\rm{d}}x} = - 4\tan 4x + C\)
A. 11
B. 3
C. -3
D. -11
A. 8
B. \(\frac{{26}}{3}\)
C. 24
D. 26
A. 1 + 5i
B. 1 - 5i
C. - 5 + 5i
D. - 5 - i
A. (5;-7)
B. (-5;7)
C. (-5;-7)
D. (7;-5)
A. 10
B. 30
C. 90
D. 15
A. 30
B. 150
C. 100
D. 10
A. \(V = 3\pi {r^2}h\)
B. \(V = \pi {r^2}h\)
C. \(V = \pi rh\)
D. \(V = \frac{1}{3}\pi {r^2}h\)
A. \(144\pi {\rm{ c}}{{\rm{m}}^2}\)
B. \(54\pi {\rm{ c}}{{\rm{m}}^2}\)
C. \(36\pi {\rm{ c}}{{\rm{m}}^2}\)
D. \(27\pi {\rm{ c}}{{\rm{m}}^2}\)
A. \(\left( { - 7; - 1;1} \right)\)
B. \(\left( {7;1;\, - 1} \right)\)
C. \(\left( {3;3;9} \right)\)
D. (1;1;3)
A. \(I\left( { - 4;\,2;\, - 2} \right)\)
B. \(I\left( {2;\, - 1;\,1} \right)\)
C. \(I\left( { - 2;\,1;\,0} \right)\)
D. \(I\left( {2;\, - 1;\,0} \right)\)
A. \(M\left( { - 1;\, - 2;\,0} \right)\)
B. \(N\left( {2;\, - 1;\, - 3} \right)\)
C. \(P\left( { - 2;\,1;\,3} \right)\)
D. \(Q\left( {3;\,2;\,4} \right)\)
A. \({\vec u_1} = \left( {1;\,1;\,1} \right)\)
B. \({\vec u_2} = \left( {1;\,2;\,1} \right)\)
C. \({\vec u_3} = \left( {0;\,1;\,0} \right)\)
D. \({\vec u_4} = \left( {1; - 2;1} \right)\)
A. \(C_{10}^5 + C_5^3 + C_2^2\)
B. \(C_{10}^2 + C_{10}^3 + C_{10}^5\)
C. \(C_{10}^2.C_8^3.C_5^5\)
D. \(C_{10}^2 + C_8^3 + C_5^5\)
A. \(h\left( x \right) = {x^3} + x - \sin x\)
B. \(k\left( x \right) = 2x + 1\)
C. \(g\left( x \right) = {x^3} - 6{x^2} + 15x + 3\)
D. \(f\left( x \right) = \frac{{ - {x^2} - 2x + 5}}{{x + 1}}\)
A. \(\mathop {\max }\limits_{\left[ {1;4} \right]} f\left( x \right) = \frac{1}{3}\)
B. \(\mathop {\max }\limits_{\left[ {1;4} \right]} f\left( x \right) = \frac{2}{3}\)
C. \(\mathop {\max }\limits_{\left[ {1;4} \right]} f\left( x \right) = 1\)
D. Không tồn tại.
A. \(S = \left( {0;\frac{3}{2}} \right)\)
B. \(S = \left( { - 1;\frac{3}{2}} \right)\)
C. \(S = \left( { - \infty ;0} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\)
D. \(S = \left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)
A. K = -2
B. K = 2
C. K = 1
D. K = -1
A. Q(-3;1)
B. N(3;1)
C. M(3;-1)
D. P(-1;3)
A. \(\cos \alpha = \frac{1}{{2\sqrt 3 }}\)
B. \(\cos \alpha = \frac{1}{{\sqrt 3 }}\)
C. \(\cos \alpha = \frac{1}{{\sqrt 2 }}\)
D. \(\cos \alpha = \frac{1}{{3\sqrt 2 }}\)
A. \(2a\sqrt 3 \)
B. \(a\sqrt 6 \)
C. \(\frac{{a\sqrt 3 }}{2}\)
D. \(a\sqrt 3 \)
A. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 16\)
B. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 16\)
C. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 4\)
D. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 4\)
A. \(\frac{{x + 3}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 2}}{1}\)
B. \(\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 2}}{1}\)
C. \(\frac{{x - 2}}{3} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{2}\)
D. \(\frac{{x + 2}}{3} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)
A. \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} g\left( {\left| {x + 3} \right| - 4} \right) = g\left( { - 3} \right)\)
B. \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} g\left( {\left| {x + 3} \right| - 4} \right) = \frac{{g\left( { - 3} \right) + g\left( 1 \right)}}{2}\)
C. \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} g\left( {\left| {x + 3} \right| - 4} \right) = g\left( { - 1} \right)\)
D. \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} g\left( {\left| {x + 3} \right| - 4} \right) = g\left( 1 \right)\)
A. 2019
B. 2021
C. 2020
D. 2022
A. \(\frac{1}{2}\)
B. \(\frac{9}{2}\)
C. \(\frac{{11}}{2}\)
D. \(\frac{{13}}{2}\)
A. 0
B. 1
C. 2
D. 4
A. \(2{a^3}\)
B. \(\frac{{2\sqrt 3 {a^3}}}{3}\)
C. \({a^3}\)
D. \(\frac{{2{a^3}}}{3}\)
A. \(9\,{{\rm{m}}^2}\)
B. \(8,5{\rm{ }}{{\rm{m}}^2}\)
C. \(8,6{\rm{ }}{{\rm{m}}^2}\)
D. \(9,2{\rm{ }}{{\rm{m}}^2}\)
A. \(d:\left\{ \begin{array}{l} x = 1 - 3t\\ y = 5t\\ z = - 1 - 8t \end{array} \right.\left( {t \in R} \right)\)
B. \(d:\left\{ \begin{array}{l} x = 1 + 3t\\ y = - 5t\\ z = - 1 + 8t \end{array} \right.\left( {t \in R} \right)\)
C. \(d:\left\{ \begin{array}{l} x = 1 + 12t\\ y = - 5t\\ z = - 1 + 32t \end{array} \right.\left( {t \in R} \right)\)
D. \(\left\{ \begin{array}{l} x = 1 + 3t\\ y = 5t\\ z = - 1 + 8t \end{array} \right.\left( {t \in R} \right)\)
A. 4
B. 1
C. 2
D. 3
A. 4
B. 1
C. 2
D. Vô số
A. \(k = \sqrt[3]{4}\)
B. \(k = \sqrt[3]{2} - 1\)
C. \(k = \frac{1}{2}\)
D. \(k = \sqrt[3]{4} - 1.\)
A. 1
B. 0
C. \(2\sqrt 3 \)
D. 3
A. \(V = \pi \int\limits_a^b {|f(y)|\,dy} \).
B. \(V = \int\limits_a^b {|f(x)|\,dx} \).
C. \(V = {\pi ^2}\int\limits_a^b {{f^2}(x)\,dx} \).
D. \(V = \pi \int\limits_a^b {{f^2}(y)\,} dy\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247