Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( 1;0\,;\,-1 \right)\), đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}\) và mặt phẳng \(\left( P \right):4x+y+...

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( 1;0\,;\,-1 \right)\), đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}\) và mặt phẳng \(\left( P \right):4x+y+z+1=0\). Viết phương trình đường thẳng d đi qua M, cắt \(\Delta \) tại N, cắt \(\left( P \right)\) tại E sao cho M là trung điểm của NE.

A. \(d:\left\{ \begin{array}{l} x = 1 - 3t\\ y = 5t\\ z = - 1 - 8t \end{array} \right.\left( {t \in R} \right)\)

B. \(d:\left\{ \begin{array}{l} x = 1 + 3t\\ y = - 5t\\ z = - 1 + 8t \end{array} \right.\left( {t \in R} \right)\)

C. \(d:\left\{ \begin{array}{l} x = 1 + 12t\\ y = - 5t\\ z = - 1 + 32t \end{array} \right.\left( {t \in R} \right)\)

D. \(\left\{ \begin{array}{l} x = 1 + 3t\\ y = 5t\\ z = - 1 + 8t \end{array} \right.\left( {t \in R} \right)\)

* Đáp án

D

* Hướng dẫn giải

Giả sử \(N\left( -1-t\,;\,2t\,;\,1+3t \right)\in \Delta \).

Vì M là trung điểm của NE \Rightarrow E\left( 3+t\,;\,-2t\,;\,-3-3t \right)\).

Theo giả thiết \(E\in \left( P \right) \Rightarrow 4\left( 3+t \right)+\left( -2t \right)+\left( -3-3t \right)+1=0 \Leftrightarrow t=10 \Rightarrow N\left( -11\,;\,20\,;\,31 \right)\).

Ta có \(\overrightarrow{MN}=\left( 12\,;\,20\,;\,32 \right)=4\left( 3\,;\,5\,;\,8 \right)\)

Đường thẳng d đi qua \(M\left( 1\,;\,0\,;\,-1 \right)\) và \(N\left( -11\,;\,20\,;\,31 \right)\), nên d có 1 vectơ chỉ phương \(\vec{u}=\left( 3\,;\,5\,;\,8 \right)\). Khi đó ta có phương trình đường thẳng \(d:\left\{ \begin{array}{l} x = 1 + 3t\\ y = 5t\\ z = - 1 + 8t \end{array} \right.\left( {t \in R} \right)\)

Copyright © 2021 HOCTAP247