Cho hàm số \(f\left( x \right)=\frac{{{3}^{x}}}{{{3}^{x}}+{{m}^{2}}}\) với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho \(f\left( a \right)+f\left( b \right)=1\) v...

Câu hỏi :

Cho hàm số \(f\left( x \right)=\frac{{{3}^{x}}}{{{3}^{x}}+{{m}^{2}}}\) với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho \(f\left( a \right)+f\left( b \right)=1\) với mọi số thực a, b thoả mãn \({{e}^{a+b}}\le e\left( a+b \right)\). Số các phần tử của S là

A. 4

B. 1

C. 2

D. Vô số

* Đáp án

C

* Hướng dẫn giải

\({{e}^{a+b}}\le e\left( a+b \right) \Leftrightarrow {{e}^{a+b-1}}\le a+b \Leftrightarrow {{e}^{a+b-1}}-1\le a+b-1 \Leftrightarrow {{e}^{a+b-1}}-\left( a+b-1 \right)-1\le 0\).

Xét hàm số \(g\left( x \right)={{e}^{x}}-x-1\) với \(x\in \mathbb{R}\).

\({g}'\left( x \right)={{e}^{x}}-1 \Rightarrow {g}'\left( x \right)=0\Leftrightarrow {{e}^{x}}-1=0 x=0\).

Bảng biến thiên của \(g\left( x \right)\):

Từ bảng biến thiên ta thấy \(g\left( x \right)\ge 0\) với mọi \(x\in \mathbb{R} \Leftrightarrow {{e}^{a+b-1}}-\left( a+b-1 \right)-1\ge 0\) với mọi \(a,b\in \mathbb{R}\).

Vậy \({{e}^{a+b-1}}-\left( a+b-1 \right)-1=0 \Leftrightarrow a+b-1=0 \Leftrightarrow a+b=1\).

\(\Rightarrow f\left( a \right)+f\left( b \right)=1 \Leftrightarrow f\left( a \right)+f\left( 1-a \right)=1 \Leftrightarrow \frac{{{3}^{a}}}{{{3}^{a}}+{{m}^{2}}}+\frac{{{3}^{1-a}}}{{{3}^{1-a}}+{{m}^{2}}}=1 \Leftrightarrow \frac{{{3}^{a}}}{{{3}^{a}}+{{m}^{2}}}+\frac{3}{3+{{3}^{a}}{{m}^{2}}}=1 \Leftrightarrow \frac{{{m}^{2}}{{t}^{2}}+6t+3{{m}^{2}}}{{{m}^{2}}{{t}^{2}}+\left( {{m}^{4}}+3 \right)t+3{{m}^{2}}}=1\) ( với \(t={{3}^{a}}>0\))

\(\Leftrightarrow 6t=\left( {{m}^{4}}+3 \right)t\Leftrightarrow 6={{m}^{4}}+3\Leftrightarrow {{m}^{4}}=3\Leftrightarrow m=\pm \sqrt[4]{3}\).

Vậy tập S có hai phần tử.

Copyright © 2021 HOCTAP247