A. \(\frac{{25}}{{42}}\)
B. \(\frac{5}{{21}}\)
C. \(\frac{{65}}{{126}}\)
D. \(\frac{{55}}{{126}}\)
A
Có \(\text{A}_{9}^{4}\) cách tạo ra số có 4 chữ số phân biệt từ \(X=\left\{ 1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9 \right\}\).
\(\Rightarrow \left| S \right|=\text{A}_{9}^{4}=3024\).
\(\Rightarrow \left| \Omega \right|=3024\).
Gọi biến cố A:”chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn”.
Nhận thấy không thể có 3 chữ số chẵn hoặc 4 chữ số chẵn vì lúc đó luôn tồn tại hai chữ số chẵn nằm cạnh nhau.
Trường hợp 1: Cả 4 chữ số đều lẻ.
Chọn 4 số lẻ từ X và xếp thứ tự có \(\text{A}_{5}^{4}\) số.
Trường hợp 2: Có 3 chữ số lẻ, 1 chữ số chẵn.
Chọn 3 chữ số lẻ, 1 chữ số chẵn từ X và xếp thứ tự có \(\text{C}_{5}^{3}.\text{C}_{4}^{1}.4!\) số.
Trường hợp 3: Có 2 chữ số chẵn, 2 chữ số lẻ.
Chọn 2 chữ số lẻ, 2 chữ số chẵn từ X có \(\text{C}_{5}^{2}.\text{C}_{4}^{2}\) cách.
Xếp thứ tự 2 chữ số lẻ có 2! cách.
Hai chữ số lẻ tạo thành 3 khoảng trống, xếp hai chữ số chẵn vào 3 khoảng trống và sắp thứ tự có 3! cách.
\(\Rightarrow \) trường hợp này có \(\text{C}_{5}^{2}.\text{C}_{4}^{2}.2!.3!\) số.
Vậy \(P\left( A \right)=\frac{\left| {{\Omega }_{A}} \right|}{\left| \Omega \right|}=\frac{\text{A}_{5}^{4}+\text{C}_{5}^{3}.\text{C}_{4}^{1}.4!+\text{C}_{5}^{2}.\text{C}_{4}^{2}.2!.3!}{3024}=\frac{25}{42}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247