Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm \(A\left( 1;0;0 \right), C\left( 0;0;3 \right), B\left( 0;2;0 \right)\). Tập hợp các điểm M thỏa mãn \(M{{A}^{2}}=M{{B}^{2}}+M...

Câu hỏi :

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm \(A\left( 1;0;0 \right), C\left( 0;0;3 \right), B\left( 0;2;0 \right)\). Tập hợp các điểm M thỏa mãn \(M{{A}^{2}}=M{{B}^{2}}+M{{C}^{2}}\) là mặt cầu có bán kính là:

A. R = 2

B. \(R = \sqrt 3 \)

C. R = 3

D. \(R = \sqrt 2 \)

* Đáp án

D

* Hướng dẫn giải

Giả sử \(M\left( x;y;z \right)\).

Ta có:

\(M{{A}^{2}}={{\left( x-1 \right)}^{2}}+{{y}^{2}}+{{z}^{2}};M{{B}^{2}}={{x}^{2}}+{{\left( y-2 \right)}^{2}}+{{z}^{2}}$;$M{{C}^{2}}={{x}^{2}}+{{y}^{2}}+{{\left( z-3 \right)}^{2}}\).

\(M{{A}^{2}}=M{{B}^{2}}+M{{C}^{2}} \Leftrightarrow {{\left( x-1 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}={{x}^{2}}+{{\left( y-2 \right)}^{2}}+{{z}^{2}}+{{x}^{2}}+{{y}^{2}}+{{\left( z-3 \right)}^{2}} \Leftrightarrow -2x+1={{\left( y-2 \right)}^{2}}+{{x}^{2}}+{{\left( z-3 \right)}^{2}} \Leftrightarrow {{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=2\).

Vậy tập hợp các điểm M thỏa mãn \(M{{A}^{2}}=M{{B}^{2}}+M{{C}^{2}}\) là mặt cầu có bán kính là \(R=\sqrt{2}\).

Copyright © 2021 HOCTAP247