A. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( { - 1} \right)\)
B. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = \frac{{g\left( { - 3} \right) + g\left( 1 \right)}}{2}\)
C. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( { - 3} \right)\)
D. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( 1 \right)\)
A
Ta có \({g}'\left( x \right)={f}'\left( x \right)-{{x}^{2}}-\frac{3}{2}x+\frac{3}{2}={f}'\left( x \right)-\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\).
Vẽ parabol \(\left( P \right):y={{x}^{2}}+\frac{3}{2}x-\frac{3}{2}\). Ta thấy \(\left( P \right)\) đi qua các điểm có toạ độ \(\left( -3\,;3 \right),\left( -1\,;2 \right), \left( 1\,;1 \right)\).
+ Trên khoảng \(\left( -3\,;-1 \right)\) đồ thị hàm số \({f}'\left( x \right)\) nằm phía dưới \(\left( P \right)\) nên
\({f}'\left( x \right)<\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\Rightarrow {g}'\left( x \right)<0\).
+ Trên khoảng \(\left( -1\,;1 \right)\) đồ thị hàm số \({f}'\left( x \right)\) nằm phía trên \(\left( P \right)\) nên
\({f}'\left( x \right)>\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\Rightarrow {g}'\left( x \right)>0\).
+ Trên khoảng \(\left( 1\,;+\infty \right)\) đồ thị hàm số \({f}'\left( x \right)\) nằm phía dưới \(\left( P \right)\) nên
\({f}'\left( x \right)<\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\Rightarrow {g}'\left( x \right)<0\).
Bảng biến thiên
Từ bảng biến thiên, ta có \(\underset{\left[ -3;1 \right]}{\mathop{\min }}\,g\left( x \right)=g\left( -1 \right)\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247