Cho hàm số y=f(x) có đạo hàm liên tục trên \(\mathbb{R}, f\left( -6 \right)...

Câu hỏi :

Cho hàm số y=f(x) có đạo hàm liên tục trên \(\mathbb{R}, f\left( -6 \right)<0\) và bảng xét dấu đạo hàm

A. 7

B. 4

C. 1

D. 5

* Đáp án

D

* Hướng dẫn giải

Đặt \(g\left( x \right)=3f\left( -{{x}^{4}}+4{{x}^{2}}-6 \right)+2{{x}^{6}}-3{{x}^{4}}-12{{x}^{2}}\)

\(\Rightarrow  {g}'\left( x \right)=-\left( 12{{x}^{3}}-24x \right).{f}'\left( -{{x}^{4}}+4{{x}^{2}}-6 \right)+12{{x}^{5}}-12{{x}^{3}}-24x\)

\(=-12x\left( {{x}^{2}}-2 \right).{f}'\left( -{{x}^{4}}+4{{x}^{2}}-6 \right)+12x\left( {{x}^{4}}-{{x}^{2}}-2 \right)\)

\(=-12x\left( {{x}^{2}}-2 \right).\left[ {f}'\left( -{{x}^{4}}+4{{x}^{2}}-6 \right)-\left( {{x}^{2}}+1 \right) \right]\).

Khi đó \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ f'\left( { - {x^4} + 4{x^2} - 6} \right) - \left( {{x^2} + 1} \right) = 0\\ {x^2} - 2 = 0 \end{array} \right.\)\(\Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \pm \sqrt 2 \\ f'\left( { - {x^4} + 4{x^2} - 6} \right) = {x^2} + 1 \end{array} \right.\)

Ta có \(-{{x}^{4}}+4{{x}^{2}}-6=-{{\left( {{x}^{2}}-2 \right)}^{2}}-2\le -2,\,\,\forall x\in \mathbb{R}\).

Do đó \({f}'\left( -{{x}^{4}}+4{{x}^{2}}-6 \right)\le {f}'\left( -2 \right)=0,\text{ }\forall x\in \mathbb{R}\).

Mà \({{x}^{2}}+1\ge 1,\text{ }\forall x\in \mathbb{R}\).

Do đó phương trình \({f}'\left( -{{x}^{4}}+4{{x}^{2}}-6 \right)={{x}^{2}}+1\) vô nghiệm.

Hàm số \(g\left( x \right)=3f\left( -{{x}^{4}}+4{{x}^{2}}-6 \right)+2{{x}^{6}}-3{{x}^{4}}-12{{x}^{2}}\) có bảng xét dấu đạo hàm như sau

Suy ra hàm số \(g\left( x \right)=3f\left( -{{x}^{4}}+4{{x}^{2}}-6 \right)+2{{x}^{6}}-3{{x}^{4}}-12{{x}^{2}}\) có 3 điểm cực tiểu.

Mà \(g\left( 0 \right)=3f\left( -6 \right)<0\)

Vậy \(y=\left| 3f\left( -{{x}^{4}}+4{{x}^{2}}-6 \right)+2{{x}^{6}}-3{{x}^{4}}-12{{x}^{2}} \right|\) có 5 điểm cực trị

Copyright © 2021 HOCTAP247