A. 12
B. 16
C. 9
D. \(4\sqrt {10} \)
A
Đặt \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+mx+3\).
Ta có: \({f}'\left( x \right)=3{{x}^{2}}-6x+m, f''\left( x \right)=6x-6\).
\({f}''\left( x \right)=0\Leftrightarrow x=1, f\left( 1 \right)=m+1\), tức điểm uốn của đồ thị là \(I\left( 1;m+1 \right)\).
Điều kiện cần để ACBD là hình bình hành là \(I\in d\), tức m+1=a.
Lúc này, hoành độ của \(C,\,\,D\) là nghiệm của phương trình \({{x}^{3}}-3{{x}^{2}}+mx+3=\left( m+1 \right)x\).
Ta có \({{x}^{3}}-3{{x}^{2}}+mx+3=\left( m+1 \right)x\Leftrightarrow \left[ \begin{align} & x=-1 \\ & x=1 \\ & x=3 \\ \end{align} \right.\).
Không mất tính tổng quát, ta giả sử \(C\left( -1;-a \right)\) và \(D\left( 3;3a \right)\).
Do \(CD=4\sqrt{2},\,\,a>0\) nên ta tìm được a=1. Từ đây được m=0.
Với m=0 thì \(\left( C \right)\) thực sự có hai điểm cực trị, chúng lần lượt có tọa độ là \(\left( 0;3 \right),\,\,\left( 2;-1 \right)\).
Không mất tính tổng quát, ta giả sử \(A\left( 0;3 \right)\) và \(B\left( 2;-1 \right)\). Lúc này, cùng với \(C\left( -1;-1 \right)\) và \(D\left( 3;3 \right)\) ta có ACBD thực sự là một hình hành và dễ dàng tính được diện tích của nó là 12.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247