A. 2
B. 0,5
C. 1,5
D. 0
C
Ta có \(d\left( {A,\left( P \right)} \right) = \frac{{\left| {2 + m + 3\left( {2m + 1} \right) - m - 2} \right|}}{{\sqrt {{1^2} + {m^2} + {{\left( {2m + 1} \right)}^2}} }} = \frac{{3\left| {2m + 1} \right|}}{{\sqrt {1 + {m^2} + {{\left( {2m + 1} \right)}^2}} }}\).
Vì \(1 + {m^2} \ge \frac{1}{5}{\left( {2m + 1} \right)^2}\), \(\forall m\in \mathbb{R}\) nên \(d\left( {A,\left( P \right)} \right) \le \frac{{3\left| {2m + 1} \right|}}{{\sqrt {\frac{1}{5}{{\left( {2m + 1} \right)}^2} + {{\left( {2m + 1} \right)}^2}} }} = \frac{{\sqrt {30} }}{2}\).
Suy ra, khoảng cách từ điểm A đến (P) là lớn nhất khi và chỉ khi m = 2.
Khi đó: \(\left( P \right):x + 2y + 5z - 4 = 0\); \(AH:\left\{ {\begin{array}{*{20}{l}} {x = 2 + t}\\ {y = 1 + 2t}\\ {z = 3 + 5t} \end{array}} \right.\).
\(H=d\cap \left( P \right) \Rightarrow 2+t+2\left( 1+2t \right)+5\left( 3+5t \right)-4=0 \Leftrightarrow t=-\frac{1}{2} \Rightarrow H\left( \frac{3}{2};0;\frac{1}{2} \right)\).
Vậy \(a=\frac{3}{2}, b=0 \Rightarrow a+b=\frac{3}{2}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247