Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Trưng Vương lần 2 Cho \(\int\limits_{1}^{2}{f\left( {{x}^{2}}+1 \right)x\text{d}x=2}\). Khi đó \(I=\int\limits_{2}^{5}{f\left( x \right)}\text{d}x\) bằng:

Cho \(\int\limits_{1}^{2}{f\left( {{x}^{2}}+1 \right)x\text{d}x=2}\). Khi đó \(I=\int\limits_{2}^{5}{f\left( x \right)}\text{d}x\) bằng:

Câu hỏi :

Cho \(\int\limits_{1}^{2}{f\left( {{x}^{2}}+1 \right)x\text{d}x=2}\). Khi đó \(I=\int\limits_{2}^{5}{f\left( x \right)}\text{d}x\) bằng:

A. 2

B. 1

C. -1

D. 4

* Đáp án

D

* Hướng dẫn giải

Đặt \(t={{x}^{2}}+1\Rightarrow dt=2xdx\)

Đổi cận: \(x=1\Rightarrow t=2, x=2\Rightarrow t=5\)

Khi đó: \(\int\limits_{1}^{2}{f\left( {{x}^{2}}+1 \right)x\text{d}x=\frac{1}{2}}\int\limits_{2}^{5}{f\left( t \right)\text{d}t} \Rightarrow \int\limits_{2}^{5}{f\left( t \right)}\text{d}t=2\int\limits_{1}^{2}{f\left( {{x}^{2}}+1 \right)x\text{d}x=4}\)

Mà tích phân không phụ thuộc vào biến nên: \(I=\int\limits_{2}^{5}{f\left( x \right)}\text{d}x=\int\limits_{2}^{5}{f\left( t \right)}\text{d}t=4\).

Copyright © 2021 HOCTAP247