A. \(I = \frac{1}{{2022}}\)
B. \(I = \frac{1}{{2021}}\)
C. \(I = \frac{1}{{4042}}\)
D. I = 0
A
+ Đặt \(t=2\cos x-1\Rightarrow \text{dt}=-2\sin x\text{d}x\Rightarrow \sin x\text{d}x=-\frac{\text{dt}}{2}\).
+ Khi x=0 thì t=1
Khi \(x=\frac{\pi }{2}\) thì t=-1
+ Do đó: \(I=\frac{1}{2}\int\limits_{-1}^{1}{f(t)\text{dt}=}\frac{1}{2}\int\limits_{-1}^{1}{f(x)\text{d}x=\frac{1}{2}\int\limits_{-1}^{1}{{{\left| x \right|}^{2021}}\text{d}x}}\).
Vì \(f(x)={{\left| x \right|}^{2021}}\) là hàm số chẵn nên \(\int\limits_{-1}^{1}{{{\left| x \right|}^{2021}}dx=}2\int\limits_{0}^{1}{{{\left| x \right|}^{2021}}dx}\).
Suy ra \(I=\int\limits_{0}^{1}{{{\left| x \right|}^{2021}}dx=\int\limits_{0}^{1}{{{x}^{2021}}dx=}}\left. \frac{{{x}^{2022}}}{2022} \right|_{0}^{1}=\frac{1}{2022}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247