Cho hai số phức \({{z}_{1}},{{z}_{2}}\). Có bao nhiêu số phức \(z={{z}_{1}}-{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=2,\,{{z}_{1}}+{{z}_{2}}=2-2i\)?

Câu hỏi :

Cho hai số phức \({{z}_{1}},{{z}_{2}}\). Có bao nhiêu số phức \(z={{z}_{1}}-{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=2,\,{{z}_{1}}+{{z}_{2}}=2-2i\)?

A. 1

B. 2

C. 3

D. Vô số

* Đáp án

B

* Hướng dẫn giải

+ Gọi M,N,P,Q lần lượt là các điểm biểu diễn của các số phức \({{z}_{1}},{{z}_{2}},{{z}_{1}}+{{z}_{2}},{{z}_{1}}-{{z}_{2}}\).

Ta có: \(\overrightarrow{OP}=\overrightarrow{OM}+\overrightarrow{ON}\) nên OMPN là hình bình hành mà \(OM=ON=2,\,OP=2\sqrt{2}\), do đó: OMPN là một hình vuông với O,P cố định.

Vì vậy M,N có hai vị trí \(M\left( 2;0 \right),\,N\left( 0;-2 \right)\) hoặc \(M\left( 0;-2 \right),\,N\left( 2;0 \right)\)

+ Mặt khác: Ta có \(\overrightarrow{OQ}=\overrightarrow{OM}-\overrightarrow{ON}=\overrightarrow{NM}\) nên có hai điểm Q thỏa mãn bài toán.

Vậy có hai số phức \(z={{z}_{1}}-{{z}_{2}}\)

Copyright © 2021 HOCTAP247