Cho hình chóp đều S.ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của các cạnh SA, CD. Biết góc giữa đường thẳng MN với mặt phẳng \(\left( SBD \right)\) bằng \({{30}^{{}...

Câu hỏi :

Cho hình chóp đều S.ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của các cạnh SA, CD. Biết góc giữa đường thẳng MN với mặt phẳng \(\left( SBD \right)\) bằng \({{30}^{{}^\circ }}\)(như hình vẽ).

A. \(V = \frac{{\sqrt {30} {a^3}}}{{18}}\)

B. \(V = \frac{{\sqrt {21} {a^3}}}{6}\)

C. \(V = \frac{{\sqrt 5 {a^3}}}{3}\)

D. \(V = \frac{{\sqrt {22} {a^3}}}{6}\)

* Đáp án

D

* Hướng dẫn giải

Chọn hệ trục Oxyz như hình vẽ. Gọi SO=x>0. Không mất tính tổng quát giả sử a=1

Ta có: \(S\left( 0;0;x \right),\,A\left( \frac{\sqrt{2}}{2};0;0 \right),\,B\left( 0;\frac{\sqrt{2}}{2};0 \right),C\left( -\frac{\sqrt{2}}{2};0;0 \right),M\left( \frac{\sqrt{2}}{4};0;\frac{x}{2} \right),N\left( -\frac{\sqrt{2}}{4};\frac{\sqrt{2}}{4};0 \right)\).

Suy ra: \(\overrightarrow{MN}=\left( -\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{4};-\frac{x}{2} \right)=-\frac{1}{4}\left( 2\sqrt{2};-\sqrt{2};2x \right)\Rightarrow \text{VTCP}\,\overrightarrow{u}=\left( 2\sqrt{2};-\sqrt{2};2x \right)\).

+ Mặt khác, \(\left( SBD \right)\) có một VTPT là \(\overrightarrow{i}=\left( 1;0;0 \right)\).

Ta có: \(\sin \left( MN,\left( SBD \right) \right)=\frac{1}{2}\Leftrightarrow \frac{\left| \overrightarrow{u}.\overrightarrow{n} \right|}{\left| \overrightarrow{u} \right|.\left| \overrightarrow{n} \right|}=\frac{1}{2}\Leftrightarrow \frac{2\sqrt{2}}{\sqrt{10+4{{x}^{2}}}}=\frac{1}{2}\Leftrightarrow x=\frac{\sqrt{22}}{2}\).

Vậy \({{V}_{S.ABCD}}=\frac{1}{3}.\frac{\sqrt{22}}{2}.{{a}^{3}}=\frac{\sqrt{22}{{a}^{3}}}{6}\).

Copyright © 2021 HOCTAP247