A. \(24\sqrt 5 \)
B. 48
C. 72
D. \(28\sqrt 5 \)
A
Ta có: \(\left( {{S}_{1}} \right),\,\,\left( {{S}_{2}} \right)\) có cùng tâm \(I\left( -4;0;0 \right)\) và lần lượt có bán kính là \({{r}_{1}}=4,\,\,{{r}_{2}}=6\).
Gọi T là hình chiếu của I trên d, ta được \(TB=\sqrt{I{{B}^{2}}-I{{T}^{2}}}=2\sqrt{5}\), tức \(BC=4\sqrt{5}\).
Gọi \(\left( P \right)\) là tiếp diện của \(\left( {{S}_{1}} \right)\) tại T, khi đó \(\Delta \) qua T và nằm trong \(\left( P \right)\).
Gọi H là hình chiếu của A trên d, ta có \(AH\le AT\), dấu bằng xảy ra khi \(d\bot AT\).
Gọi \(M,\,\,N\) là các giao điểm của đường thẳng AI và \(\left( {{S}_{1}} \right)\) với AM<AN. Dễ thấy AN=12 và đây cũng chính là độ dài lớn nhất của AT.
Lúc này ta có \(AH\le AN=12\), dấu bằng xảy ra khi \(d\bot AN\).
Vậy diện tích lớn nhất của tam giác ABC là \(24\sqrt{5}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247