A. 2
B. \(\frac{4}{{15}}\)
C. \(\frac{{ - 2}}{5}\)
D. 4
B
Xét hàm số \(f\left( x \right)=\frac{2x-1}{x+3}\) trên đoạn \(\left[ 0\,;\,2 \right]\) .
Ta có: \(f\left( x \right)=\frac{2x-1}{x+3}\) liên tục trên đoạn \(\left[ 0\,;\,2 \right]\).
\(f\left( x \right)=\frac{2x-1}{x+3}\Rightarrow {f}'\left( x \right)=\frac{7}{{{\left( x+3 \right)}^{2}}}>0\,,\,\forall x\in \left[ 0\,;\,2 \right]\).
\(M=\underset{x\in \left[ 0\,;\,2 \right]}{\mathop{\max }}\,=f\left( 2 \right)=\frac{3}{5}, m=\underset{x\in \left[ 0\,;\,2 \right]}{\mathop{\min }}\,=f\left( 0 \right)=\frac{-1}{3}\).
Do đó, \(M+m=\frac{3}{5}-\frac{1}{3}=\frac{4}{15}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247