Cho hình hộp chữ nhật \(ABCD{A}'{B}'{C}'{D}'\) có \(AB=3a\,;\,A{A}'=4a\) (như hình vẽ). Tính khoảng cách từ điểm B đến mặt phẳng \(\left( AD{C}'{B}' \right)\).

Câu hỏi :

Cho hình hộp chữ nhật \(ABCD{A}'{B}'{C}'{D}'\) có \(AB=3a\,;\,A{A}'=4a\) (như hình vẽ). Tính khoảng cách từ điểm B đến mặt phẳng \(\left( AD{C}'{B}' \right)\).

A. \(\frac{{12}}{5}\)

B. \(\frac{{12}}{5}a\)

C. 5a

D. \(\frac{{5\sqrt 2 a}}{2}\)

* Đáp án

B

* Hướng dẫn giải

Dựng \(BH\bot A{B}'\,\left( 1 \right)\)

Ta có: \(\left\{ \begin{align} & {B}'{C}'\bot B{B}' \\ & {B}'{C}'\bot AB \\ \end{align} \right.\Rightarrow {B}'{C}'\bot \left( AB{B}'{A}' \right)\Rightarrow {B}'{C}'\bot BH\,\left( 2 \right)\)

Từ (1) và (2) suy ra: \(BH\bot \left( AD{C}'{B}' \right)\)

\(\Rightarrow d\left( B\,;\,\left( AD{C}'{B}' \right) \right)=BH=\frac{B{B}'.AB}{\sqrt{B{{{{B}'}}^{2}}+A{{B}^{2}}}}$$=\frac{4a.3a}{\sqrt{{{\left( 4a \right)}^{2}}+{{\left( 3a \right)}^{2}}}}=\frac{12a}{5}\).

Copyright © 2021 HOCTAP247