Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) liên tục trên tập số thực \(\mathbb{R}\) và có đồ thị như hình vẽ. ​ Biế...

Câu hỏi :

Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) liên tục trên tập số thực \(\mathbb{R}\) và có đồ thị như hình vẽ.

A. \(\frac{{1573}}{{64}}\)

B. 198

C. \(\frac{{37}}{4}\)

D. \(\frac{{14245}}{{64}}\)

* Đáp án

A

* Hướng dẫn giải

Từ đồ thị hàm số \(y={f}'\left( x \right)\) và giả thiết \(f\left( -1 \right)=\frac{13}{4},\,f\left( 2 \right)=6\) ta có bảng biến thiên hàm số \(y=f\left( x \right)\) trên \(\left[ -1;2 \right]\):

Ta có \({g}'\left( x \right)=3{{f}^{2}}\left( x \right).{f}'\left( x \right)-3{f}'\left( x \right)\).

Xét trên đoạn \(\left[ -1;2 \right]\).

\({g}'\left( x \right)=0 \Leftrightarrow 3{f}'\left( x \right)\left[ {{f}^{2}}\left( x \right)-1 \right]=0 \Leftrightarrow {f}'\left( x \right)=0\)

\(\Leftrightarrow \left[ \begin{align} & x=-1 \\ & x=2 \\ \end{align} \right.\)

Bảng biến thiên

\(\Rightarrow \underset{\left[ -1;2 \right]}{\mathop{\min }}\,g\left( x \right)=g\left( -1 \right)={{f}^{3}}\left( -1 \right)-3f\left( -1 \right)=\frac{1573}{64}\).

Copyright © 2021 HOCTAP247