A. 294.053.000 đồng
B. 283.904.000 đồng
C. 293.804.000 đồng
D. 283.604.000 đồng
A
Gắn hệ trục tọa độ Oxy: đặt gốc tọa độ O vào tâm của hình elip và hai trục tọa độ song song với các cạnh của hình chữ nhật.
+ Phương trình Elip của đường viền ngoài của con đường là \(\left( {{E}_{1}} \right):\frac{{{x}^{2}}}{{{50}^{2}}}+\frac{{{y}^{2}}}{{{30}^{2}}}=1\) Phần đồ thị của \(\left( {{E}_{1}} \right)\) nằm phía trên trục hoành có phương trình \(y=30\sqrt{1-\frac{{{x}^{2}}}{{{50}^{2}}}}={{f}_{1}}\left( x \right)\).
+ Phương trình Elip của đường viền trong của con đường là \(\left( {{E}_{2}} \right):\frac{{{x}^{2}}}{{{48}^{2}}}+\frac{{{y}^{2}}}{{{28}^{2}}}=1\). Phần đồ thị của \(\left( {{E}_{2}} \right)\) nằm phía trên trục hoành có phương trình \(y=28\sqrt{1-\frac{{{x}^{2}}}{{{48}^{2}}}}={{f}_{2}}\left( x \right)\)
+Gọi \({{S}_{1}}\) là diện tích của \(\left( {{E}_{1}} \right)\) và \({{S}_{2}}\) là diện tích của \(\left( {{E}_{2}} \right).\)
Gọi S là diện tích con đường. Khi đó
\(S={{S}_{1}}-{{S}_{2}}=2\int\limits_{-50}^{50}{30\sqrt{1-\frac{{{x}^{2}}}{{{50}^{2}}}}\text{d}x}-2\int\limits_{-48}^{48}{28\sqrt{1-\frac{{{x}^{2}}}{{{48}^{2}}}}\text{d}x}\)
Tính tích phân \(I=2\int\limits_{-a}^{a}{b\sqrt{1-\frac{{{x}^{2}}}{{{a}^{2}}}}\text{d}x},\left( a,b\in {{\mathbb{R}}^{+}} \right)\)
Đặt \(x=a\sin t,\left( -\frac{\pi }{2}\le t\le \frac{\pi }{2} \right)\Rightarrow \text{d}x=a\cos t\text{d}t\).
Đổi cận \(x=-a\Rightarrow t=-\frac{\pi }{2};x=a\Rightarrow t=\frac{\pi }{2}.\)
Khi đó \(I=2\int\limits_{-\frac{\pi }{2}}^{\frac{\pi }{2}}{b\sqrt{1-{{\sin }^{2}}t}.a\cos t\,\text{d}t}=2ab\int\limits_{-\frac{\pi }{2}}^{\frac{\pi }{2}}{{{\cos }^{2}}t\,\text{d}t}=ab\int\limits_{-\frac{\pi }{2}}^{\frac{\pi }{2}}{\left( 1+\cos 2t \right)\text{d}t}\)
\(=ab\left. \left( t+\frac{\sin 2t}{2} \right) \right|_{-\frac{\pi }{2}}^{\frac{\pi }{2}}=ab\pi \)
Do đó \(S={{S}_{1}}-{{S}_{2}}=50.30\pi -48.28\pi =156\pi \)
Vậy tổng số tiền làm con đường đó là \(600000.S=600000.156\pi \approx 294053000\) đồng.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247