Trong không gian Oxyz, cho điểm \(A(1\,;\,-1\,;\,3)\) và hai đường thẳng \({{d}_{1}}:\frac{x-4}{1}=\frac{y+2}{4}=\frac{z-1}{-2}, {{d}_{2}}:\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z-1}{1...

Câu hỏi :

Trong không gian Oxyz, cho điểm \(A(1\,;\,-1\,;\,3)\) và hai đường thẳng \({{d}_{1}}:\frac{x-4}{1}=\frac{y+2}{4}=\frac{z-1}{-2}, {{d}_{2}}:\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z-1}{1}\). Viết phương trình đường thẳng d đi qua A,vuông góc với đường thẳng \({{d}_{1}}\) và cắt đường thẳng \({{d}_{2}}\).

A. \(\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\)

B. \(\frac{{x - 1}}{6} = \frac{{y + 1}}{1} = \frac{{z - 3}}{5}\)

C. \(\frac{{x - 1}}{6} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{{ - 1}}\)

D. \(\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 3}}{3}\)

* Đáp án

A

* Hướng dẫn giải

Ta có \({{\vec{u}}_{{{d}_{1}}}}=\left( 1;4;-2 \right)\) là vectơ chỉ phương của \({{d}_{1}}.\)

Gọi \(M=d\cap {{d}_{2}}\Rightarrow M\left( 2+t\,;\,-1-t\,;\,1+t \right)\Rightarrow \overrightarrow{AM}=\left( 1+t\,;\,-t\,;\,t-2 \right).\)

Theo đề bài d vuông góc \({{d}_{1}}\Rightarrow {{\vec{u}}_{{{d}_{1}}}}.\overrightarrow{AM}=0\Leftrightarrow 1.\left( 1+t \right)+4\left( -t \right)-2\left( t-2 \right)=0\Leftrightarrow t=1.\)

\(\Rightarrow {{\vec{u}}_{d}}=\overrightarrow{AM}=\left( 2\,;\,-1\,;\,-1 \right)\) là vectơ chỉ phương của d.

Vậy phương trình đường thẳng d: \(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{-1}.\)

Copyright © 2021 HOCTAP247