Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN,PQ của hai đáy sao cho \(MN\bot PQ.\) Người thợ đó cắt khối đá theo các mặt cắt đi qua 3 trong 4 điểm M,N,P,Q để thu đượ...

Câu hỏi :

Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN,PQ của hai đáy sao cho \(MN\bot PQ.\) Người thợ đó cắt khối đá theo các mặt cắt đi qua 3 trong 4 điểm M,N,P,Q để thu được khối đá có hình tứ diện MNPQ. Biết rằng MN=60 cm và thể tích khối tứ diện MNPQ bằng \(36d{{m}^{3}}.\) Tìm thể tích của lượng đá bị cắt bỏ (làm tròn kết quả đến 1 chữ số thập phân).

A. \(133,6d{m^3}\)

B. \(113,6d{m^3}\)

C. \(143,6d{m^3}\)

D. \(123,6d{m^3}\)

* Đáp án

A

* Hướng dẫn giải

Dựng hình lăng trụ MP'NQ'.M'PN'Q (như hình vẽ)

Khi đó, ta có

\({V_{MNPQ}} = {V_{MP'NQ'.M'PN'Q}} - \left( {{V_{P.MNP'}} + {V_{Q.MNQ'}} + {V_{M.M'PQ}} + {V_{N.N'PQ}}} \right) = {V_{MP'NQ'.N'PN'Q}} - 4.{V_{P.MNP'}}\)

\(\begin{array}{l} = {V_{MP'NQ'.PN'Q}} - 4.\frac{1}{2}{V_{P.MQ'NP'}} = {V_{MP'NQ'.M'PN'Q}} - 2{V_{P.MQ'NP'}}\\ = {V_{MP'NQ'.PN'Q}} - 2.\frac{1}{3}{V_{MP'NQ'.PN'Q}}\\ = \frac{1}{3}{V_{MP'NQ'.PN'Q}}. \end{array}\)

\( \Rightarrow \frac{1}{3}{V_{MP'NQ'.PN'Q}} = 36(d{m^3}) \Leftrightarrow {V_{MP'NQ'.PN'Q}} = 108\left( {d{m^3}} \right)\)

Do \(MN \bot PQ,PQ//P'Q'\) nên \(MN \bot P'Q' \Rightarrow MP'NQ'\) là hình vuông

Ta có \(MN = 60cm \Rightarrow \left\{ \begin{array}{l} MQ = \frac{{60}}{{\sqrt 2 }} = 30\sqrt 2 (cm) = 3\sqrt 2 (dm)\\ OM = \frac{{60}}{2} = 30(cm) = 3(dm) \end{array} \right.\)

\( \Rightarrow {S_{MP'NQ'}} = {\left( {3\sqrt 2 } \right)^2} = 18(d{m^2})\)

\({V_{MP'NQ'.PN'Q}} = {S_{MP'NQ'}}.h \Rightarrow 18h = 108 \Leftrightarrow h = 6(dm)\)

Thể tích khối trụ là \(V = \pi {R^2}h = \pi .O{M^2}h = \pi {.3^2}.6 = 54\pi (d{m^3})\)

Thể tích của lượng đá bị cắt bỏ là \(54\pi  - 36 \approx 133,6\left( {d{m^3}} \right).\)

Copyright © 2021 HOCTAP247