Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ -3;1 \right]\) và có đồ thị như hình vẽ dưới. Biết diện tích các hình A,B,C lần lượt là 27, 2 và 3. Tính tích phân \(...

Câu hỏi :

Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ -3;1 \right]\) và có đồ thị như hình vẽ dưới. Biết diện tích các hình A,B,C lần lượt là 27, 2 và 3. Tính tích phân \(I=\int\limits_{0}^{2}{\left( {{x}^{3}}+x \right)}{f}'\left( {{x}^{2}}-3 \right)\text{d}x\).

A. -14

B. -32

C. 32

D. 28

* Đáp án

A

* Hướng dẫn giải

Đặt \(t = {x^2} - 3 \Rightarrow 2x{\rm{d}}x = {\rm{d}}t\).

Suy ra

\(I = \int_0^2 {({x^3} + x)} f'({x^2} - 3)\;{\rm{d}}x = \frac{1}{2}\int_0^2 2 x({x^2} - 3 + 4)f'({x^2} - 3)\;{\rm{d}}x = \frac{1}{2}\int_{ - 3}^1 {(t + 4)} f'(t)\;{\rm{d}}t\)

\(\Rightarrow 2I = \int_{ - 3}^1 {(x + 4)} f'(x)\;{\rm{d}}x\)

Đặt \(\left\{ \begin{array}{l} u = x + 4\\ {\rm{d}}v{\rm{ }} = {\rm{ }}f'\left( x \right){\rm{d}}x \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {\rm{d}}u = {\rm{d}}x\\ v{\rm{ }} = {\rm{ }}f\left( x \right) \end{array} \right.\).

Ta có \(2I = \int_{ - 3}^1 {(x + 4)} f'(x)\;{\rm{d}}x = (x + 4)f(x)|_{ - 3}^1 - \int_{ - 3}^1 f (x)\;{\rm{d}}x = - \int_{ - 3}^1 f (x)\;{\rm{d}}x\)

\( =  - \int_{ - 3}^{ - 1} f (x)\;{\rm{d}}x - \int_{ - 1}^0 f (x)\;{\rm{d}}x - \int_0^1 f (x)\;{\rm{d}}x\)

\( = {\rm{ }} - 27{\rm{ }} + {\rm{ }}2{\rm{ }} - 3{\rm{ }} =  - 28 \Rightarrow I =  - 14.\)

Copyright © 2021 HOCTAP247