A. -14
B. -32
C. 32
D. 28
A
Đặt \(t = {x^2} - 3 \Rightarrow 2x{\rm{d}}x = {\rm{d}}t\).
Suy ra
\(I = \int_0^2 {({x^3} + x)} f'({x^2} - 3)\;{\rm{d}}x = \frac{1}{2}\int_0^2 2 x({x^2} - 3 + 4)f'({x^2} - 3)\;{\rm{d}}x = \frac{1}{2}\int_{ - 3}^1 {(t + 4)} f'(t)\;{\rm{d}}t\)
\(\Rightarrow 2I = \int_{ - 3}^1 {(x + 4)} f'(x)\;{\rm{d}}x\)
Đặt \(\left\{ \begin{array}{l} u = x + 4\\ {\rm{d}}v{\rm{ }} = {\rm{ }}f'\left( x \right){\rm{d}}x \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {\rm{d}}u = {\rm{d}}x\\ v{\rm{ }} = {\rm{ }}f\left( x \right) \end{array} \right.\).
Ta có \(2I = \int_{ - 3}^1 {(x + 4)} f'(x)\;{\rm{d}}x = (x + 4)f(x)|_{ - 3}^1 - \int_{ - 3}^1 f (x)\;{\rm{d}}x = - \int_{ - 3}^1 f (x)\;{\rm{d}}x\)
\( = - \int_{ - 3}^{ - 1} f (x)\;{\rm{d}}x - \int_{ - 1}^0 f (x)\;{\rm{d}}x - \int_0^1 f (x)\;{\rm{d}}x\)
\( = {\rm{ }} - 27{\rm{ }} + {\rm{ }}2{\rm{ }} - 3{\rm{ }} = - 28 \Rightarrow I = - 14.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247