Có bao nhiêu số phức z thỏa mãn \(\left| \overline{z}-2i \right|=3\) và \(\left( zi-4i+5 \right)3i\) là số thực ? .

Câu hỏi :

Có bao nhiêu số phức z thỏa mãn \(\left| \overline{z}-2i \right|=3\) và \(\left( zi-4i+5 \right)3i\) là số thực ? .

A. 1

B. 0

C. 2

D. 3

* Đáp án

B

* Hướng dẫn giải

Ta có: \(\left| \overline{z}-2i \right|=3\) nên z biểu diễn bởi M nằm trên đường tròn \(\left( C \right)\), tâm \(I\left( 0\,;\,-2 \right)\), R=3.

Ta có: \(w=\left( zi-4i+5 \right)3i=\left( -y+xi-4i+5 \right)i=\left( -x+4 \right)+i\left( -y+5 \right)\) là số thựcnên w biễu diễn bởi điểm A nằm trên đường thẳng \(-y+5=0\,\left( d \right)\).

Vì \(d\left( I\,;\,d \right)=\frac{\left| -\left( -2 \right)+5 \right|}{\sqrt{{{1}^{2}}}}=7\,>R\) nên đường thẳng d không cắt đường tròn \(\left( I\,;\,R \right)\).

Vậy không có số phức z nào thỏa mãn yêu cầu bài toán .

Copyright © 2021 HOCTAP247