A. 42
B. 25
C. 17
D. 425
A. \({u_5} = - 1\)
B. \({u_5} = 48\)
C. \({u_5} = - 6\)
D. \({u_5} = - 30\)
A. \(\left( { - \infty ;\,1} \right)\)
B. (1;5)
C. (0;2)
D. \(\left( {5;\, + \infty } \right)\)
A. x = 0
B. y = -1
C. x = -1
D. y = 2
A. 1
B. 2
C. 3
D. 4
A. x = 2
B. y = 2
C. \(y = \frac{3}{4}\)
D. \(x = \frac{3}{4}\)
A. \(y = {x^3} + 3{x^2} - 2\)
B. \(y = {x^4} - 4{x^2} + 3\)
C. \(y = - {x^3} + 2x + 3\)
D. \(y = - {x^4} + 8{x^2} + 1\)
A. 1
B. 2
C. 3
D. 4
A. \(4044{\log _2}a\)
B. \(2022 + {\log _4}a\)
C. \(1011.{\log _2}a\)
D. \(\frac{1}{{1011}}{\log _2}a\)
A. \(y' = \frac{1}{x}\)
B. \(y' = \frac{1}{{x\ln 5}}\)
C. \(y' = \frac{x}{{\ln 5}}\)
D. \(y' = \frac{1}{{5\ln x}}\)
A. \(N = \sqrt x \)
B. \(N = {x^{\frac{1}{8}}}\)
C. \(N = \sqrt[2]{{{x^3}}}\)
D. \(N = \sqrt[3]{{{x^2}}}\)
A. x = 7
B. \(x = \frac{7}{4}\)
C. \(x = \frac{4}{7}\)
D. x = 4
A. \({x^2} - \cos x + C.\)
B. \(2{x^2} + \cos x + C\)
C. \({x^2} + \cos x + C\)
D. \(2{x^2} - \cos x + C\)
A. \( - \sin \left( {4x + 5} \right) + x\)
B. \(\frac{1}{4}\sin \left( {4x + 5} \right) - 3\)
C. \(\sin \left( {4x + 5} \right) - 1\)
D. \( - \frac{1}{4}\sin \left( {4x + 5} \right) + 3\)
A. \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = - 4\)
B. \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 8\)
C. \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = - 8\)
D. \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 4\)
A. \(\frac{{62}}{5}\)
B. \(\frac{5}{{62}}\)
C. \(\frac{{31}}{5}\)
D. \(\frac{5}{{31}}\)
A. \(\bar z = - 5 + 3i\)
B. \(\bar z = 5 + 3i\)
C. \(\bar z = 3 + 5i\)
D. \(\bar z = 3 - 5i\)
A. z = 1 - 10i
B. z = 5 - 4i
C. z = 3 - 10i
D. z = 3 + 3i
A. \(M\left( { - 2;3} \right)\)
B. \(Q\left( { - 2; - 3} \right)\)
C. \(N\left( {2; - 3} \right)\)
D. \(P\left( {2;3} \right)\)
A. \(\frac{{{a^3}}}{3}\)
B. \(9{a^3}\)
C. \({a^3}\)
D. \(3{a^3}\)
A. a3
B. 3a
C. a2
D. \(\frac{{{a^3}}}{3}.\)
A. \(S = \pi {r^2}\)
B. \(S = 2\pi {r^2}\)
C. \(S = 4\pi {r^2}\)
D. \(S = 3\pi {r^2}\)
A. \(50\pi \left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)
B. \(100\pi \left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)
C. \(50\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)
D. \(100\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)
A. \(N\left( { - 10;4;3} \right)\)
B. \(N\left( { - 2; - 2;6} \right)\)
C. \(N\left( { - 11; - 4;3} \right)\)
D. \(N\left( { - 11;4;3} \right)\)
A. \(\left( { - 2;4; - 6} \right)\)
B. \(\left( {2; - 4;6} \right)\)
C. \(\left( {1; - 2;3} \right)\)
D. \(\left( { - 1;2; - 3} \right)\)
A. m = -1
B. m = 1
C. m = 9
D. m = -9
A. \(\overrightarrow {{u_1}} = \left( {1;2;1} \right).\)
B. \(\overrightarrow {{u_2}} = \left( { - 1;2;1} \right).\)
C. \(\overrightarrow {{u_3}} = \left( {3; - 2; - 3} \right).\)
D. \(\overrightarrow {{u_4}} = \left( {3;2;3} \right).\)
A. \(\frac{5}{9}\)
B. \(\frac{{25}}{{36}}\)
C. \(\frac{1}{2}.\)
D. \(\frac{{13}}{{18}}\)
A. \(y = {x^4} + 3{x^2}\)
B. \(y = \frac{{x - 2}}{{x + 1}}\)
C. \(y = 3{x^3} + 3x - 2\)
D. \(y = 2{x^3} - 5x + 1\)
A. 2
B. 0
C. 4
D. 1
A. R
B. \(\left( { - \infty \,;\,0} \right)\)
C. \(\left( {0\,;\, + \infty } \right)\)
D. \(\left[ {0\,;\, + \infty } \right)\)
A. \({a^4}{b^6}\)
B. \({a^6}{b^{12}}\)
C. \({a^2}{b^{14}}\)
D. \({a^8}{b^{14}}\)
A. \(\left| z \right| = 5\sqrt 2 \)
B. \(\left| z \right| = \sqrt 2 \)
C. \(\left| z \right| = 25\sqrt 2 \)
D. \(\left| z \right| = 7\sqrt 2 \)
A. 45o
B. 30o
C. 60o
D. 90o
A. \(\sqrt 2 a\)
B. \(\frac{{\sqrt 2 a}}{2}\)
C. \(\frac{a}{2}\)
D. \(\frac{{\sqrt 3 a}}{2}\)
A. \({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 3} \right)^2} = 18\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 3} \right)^2} = 16\)
C. \({\left( {x - 1} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 3} \right)^2} = 16\)
D. \({\left( {x - 1} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 3} \right)^2} = 18\)
A. \(\left\{ \begin{array}{l} x = 1 + t\\ y = - 1 - 3t\\ z = 8 - 4t \end{array} \right.\)
B. \(\left\{ \begin{array}{l} x = 1 - 4t\\ y = - 3 + 3t\\ z = 4 - t \end{array} \right.\)
C. \(\left\{ \begin{array}{l} x = 3 - 4t\\ y = 1 + 3t\\ z = 2 - t \end{array} \right.\)
D. \(\left\{ \begin{array}{l} x = 1 + 3t\\ y = - 3 + 4t\\ z = 4 - t \end{array} \right.\)
A. \(\mathop {\max h(x)}\limits_{{\rm{[}} - \sqrt 3 ;\sqrt 3 {\rm{]}}} = 3f\left( 1 \right)\)
B. \(\mathop {\max h(x)}\limits_{{\rm{[}} - \sqrt 3 ;\sqrt 3 {\rm{]}}} = 3f\left( { - \sqrt 3 } \right)\)
C. \(\mathop {\max h(x)}\limits_{{\rm{[}} - \sqrt 3 ;\sqrt 3 {\rm{]}}} = 3f\left( {\sqrt 3 } \right)\)
D. \(\mathop {\max h(x)}\limits_{{\rm{[}} - \sqrt 3 ;\sqrt 3 {\rm{]}}} = 3f\left( 0 \right)\)
A. 2
B. 3
C. 4
D. 5
A. \(P = \frac{{13}}{3}\)
B. \(P = \frac{{15}}{3}\)
C. \(P = \frac{{10}}{3}\)
D. \(P = \frac{{11}}{3}\)
A. 1
B. 0
C. 2
D. 3
A. \(\frac{{\sqrt 2 }}{2}\)
B. 1
C. \(\sqrt 3 \)
D. \(2\sqrt 2 \)
A. \({\left( {{1 \over 3}} \right)^\pi },\,\,{\left( {{1 \over 3}} \right)^{\sqrt 2 }},\,{\left( {{1 \over 3}} \right)^0},\,\,{\left( {{1 \over 3}} \right)^{ - 1}}\)
B. \({\left( {{1 \over 3}} \right)^{ - 1}},\,\,{\left( {{1 \over 3}} \right)^0},\,{\left( {{1 \over 3}} \right)^{\sqrt 2 }},\,\,{\left( {{1 \over 3}} \right)^\pi }\).
C. \({\left( {{1 \over 3}} \right)^{ - 1}},\,\,{\left( {{1 \over 3}} \right)^0},\,{\left( {{1 \over 3}} \right)^\pi },\,\,{\left( {{1 \over 3}} \right)^{\sqrt 2 }}\)
D. \({\left( {{1 \over 3}} \right)^0},\,\,{\left( {{1 \over 3}} \right)^{ - 1}},\,{\left( {{1 \over 3}} \right)^{\sqrt 2 }},\,\,{\left( {{1 \over 3}} \right)^\pi }\).
A. \(\overrightarrow u = \left( {1\,;\,2\,;\,3} \right)\)
B. \(\overrightarrow u = \left( {0\,;\,0\,;\, - 1} \right)\)
C. \(\overrightarrow u = \left( {1\,;\,0\,;\,0} \right)\)
D. \(\overrightarrow u = \left( {1\,;\, - 2\,;\, - 3} \right)\)
A. 14
B. 15
C. 9
D. 11
A. \(\left( {3.4;3.5} \right)\)
B. \(\left( {3.6;3.7} \right)\)
C. \(\left( {3.7;3.8} \right)\)
D. \(\left( {3.9;4} \right)\)
A. \(\frac{1}{6}\)
B. \(\frac{1}{3}\)
C. \(\frac{{125}}{{768}}\)
D. \(\frac{{125}}{{128}}\)
A. \(\frac{{\sqrt 3 + 2}}{2}\)
B. 2
C. \(\frac{{\sqrt 3 + 3}}{2}\)
D. 3
A. \(m \in \left( {0;2} \right)\)
B. \(m \in \left( {2;4} \right)\)
C. \(m \in \left( {4;5} \right)\)
D. \(m \in \left( {5;7} \right)\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247