Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, đường thẳng SO vuông góc với mặt phẳng \(\left( ABCD \right)\). Biết \(AB=SB=a\sqrt{2}, SO=a\). Tính tan của góc giữa hai mặt p...

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, đường thẳng SO vuông góc với mặt phẳng \(\left( ABCD \right)\). Biết \(AB=SB=a\sqrt{2}, SO=a\). Tính tan của góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SAD \right).\)

A. \(\frac{{\sqrt 2 }}{2}\)

B. 1

C. \(\sqrt 3 \)

D. \(2\sqrt 2 \)

* Đáp án

D

* Hướng dẫn giải

Gọi M trung điểm SA. Ta có \(\Delta SAB\) cân tại \(B\Rightarrow BM\bot SA\text{    (1)}\)

Vì \(SO\bot \left( ABCD \right)\Rightarrow SO\bot BD\), lại có O trung điểm BD \(\Rightarrow \Delta SBD\) cân tại S

nên \(SD=SB=a\sqrt{2} \Rightarrow \Delta SAD\) cân tại D nên \(DM\bot SA\text{   (2)}\)

Lại có \(\left( SAB \right)\cap \left( SAD \right)=SA\text{   (3)}\)

Từ \((1);(2);(3)\Rightarrow \widehat{\left( \left( SAB \right),\left( SAD \right) \right)}=\widehat{BMD}\) hoặc \(\widehat{\left( \left( SAB \right),\left( SAD \right) \right)}=180{}^\circ -\widehat{BMD}\).

Xét \(\Delta SOB\) vuông tại O \(\Rightarrow OB=\sqrt{S{{B}^{2}}-S{{O}^{2}}}=\sqrt{{{\left( a\sqrt{2} \right)}^{2}}-{{a}^{2}}}=a\Rightarrow BD=2\text{a}\).

Xét \(\Delta AOB\) vuông tại O có \(OA=\sqrt{A{{B}^{2}}-O{{B}^{2}}}=A\Rightarrow OA=OC=a\) .

Xét \(\Delta SOC\Rightarrow SC=a\sqrt{2}\Rightarrow OM=\frac{1}{2}SC=\frac{a\sqrt{2}}{2}\,.\)

Vì \(\left\{ \begin{align} & BD\bot AC \\ & BD\bot SO \\ \end{align} \right.\Rightarrow BD\bot \left( SAC \right)\) nên \(BD\bot MO\) . Mặt khác OD=OB nên \(\Delta BDM\) cân tại M .

Xét \(\Delta BOM\) vuông tại O \(\Rightarrow BM=\sqrt{O{{M}^{2}}+O{{B}^{2}}}=\frac{a\sqrt{6}}{2}\Rightarrow DM=BM=\frac{a\sqrt{6}}{2}.\)

Xét \(\Delta BDM\Rightarrow \cos \left( BMD \right)=\frac{B{{M}^{2}}+D{{M}^{2}}-B{{D}^{2}}}{2BM.DM}=\frac{-1}{3}\Rightarrow \cos \left( \left( SAB\, \right)\,;\,\left( SAD \right) \right)=\,\frac{1}{3}.\)

Vậy \(\text{tan}\left( \left( SAB\, \right)\,;\,\left( SAD \right) \right)=\,\sqrt{\frac{1}{{{\left( \frac{1}{3} \right)}^{2}}}-1}=2\sqrt{2}\).

Copyright © 2021 HOCTAP247