A. \(\frac{1}{6}\)
B. \(\frac{1}{3}\)
C. \(\frac{{125}}{{768}}\)
D. \(\frac{{125}}{{128}}\)
A
Đặt \(A\left( a\,;\,{{a}^{2}} \right)\) và \(B\left( b\, ;\,{{b}^{2}} \right)\). Không mất tính tổng quát, ta xét a>0 và b<0
\(\left( {{d}_{1}} \right)\) là đường tiếp tuyến với \(\left( C \right)\) tại A và \(\left( {{d}_{2}} \right)\) là đường tiếp tuyến với \(\left( C \right)\) tại B
\(\Rightarrow \left\{ \begin{matrix} \left( {{d}_{1}} \right):y=2ax-{{a}^{2}} \\ \left( {{d}_{2}} \right):y=2bx-{{b}^{2}} \\ \end{matrix} \right.\)
Do \(\left( {{d}_{1}} \right)\bot \left( {{d}_{2}} \right)\) nên
\({{k}_{\left( {{d}_{1}} \right)}}.{{k}_{\left( {{d}_{2}} \right)}}=-1\Leftrightarrow \left( 2a \right).\left( 2b \right)=-1\Rightarrow b=\frac{-1}{4a}\Rightarrow B\left( \frac{-1}{4a}\,;\,\frac{1}{16{{a}^{2}}} \right)\)
\(\Rightarrow \left( {{d}_{2}} \right):y=\frac{-x}{2a}-\frac{1}{16{{a}^{2}}}\)
\({{d}_{1}}\cap {{d}_{2}}\) tại \(E\left( \frac{4{{a}^{2}}-1}{8a}\,;\,\frac{-1}{4} \right)\)
\(\Rightarrow \) chiều dài \(D=\frac{\sqrt{{{\left( 4{{a}^{2}}+1 \right)}^{3}}}}{8a}\) và chiều rộng \(R=\frac{\sqrt{{{\left( 4{{a}^{2}}+1 \right)}^{3}}}}{16{{a}^{2}}}\)
Mà \(D=2.R\Rightarrow a=1\Rightarrow {{S}_{2}}=\frac{{{\left( 4{{a}^{2}}+1 \right)}^{3}}}{128{{a}^{3}}}=\frac{125}{128}\) và suy ra \(\Rightarrow \left\{ \begin{align} & \left( {{d}_{1}} \right):y=2x-1 \\ & \left( {{d}_{2}} \right):y=\frac{-x}{2}-\frac{1}{16} \\ \end{align} \right.\)
Với a=1 suy ra \(E\left( \frac{4{{a}^{2}}-1}{8a}\,;\,\frac{-1}{4} \right)\) có tọa độ \(E\left( \frac{3}{8};-\frac{1}{4} \right)\).
Suy ra \({{S}_{1}}=\int\limits_{-\frac{1}{4}}^{\frac{3}{8}}{\left[ {{x}^{2}}-\left( \frac{-x}{2}-\frac{1}{16} \right) \right]}dx+\int\limits_{\frac{3}{8}}^{1}{\left[ {{x}^{2}}-\left( 2x-1 \right) \right]}dx=\frac{125}{768}\)
Như vậy tỉ số \(\frac{{{S}_{1}}}{{{S}_{2}}}=\frac{125}{768}.\frac{128}{125}=\frac{128}{768}=\frac{1}{6}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247