A. \(\frac{{\sqrt 3 + 2}}{2}\)
B. 2
C. \(\frac{{\sqrt 3 + 3}}{2}\)
D. 3
A
\(A\left( 0;1;2 \right)\) và \(B\left( \sqrt{3};1;3 \right)\) suy ra \(\overrightarrow{AB}=\left( \sqrt{3};0;1 \right)\Rightarrow AB=2\)
Ta có: hình lập phương có cạnh bằng độ dài cạnh AB=2 và mặt cầu (S) có bán kính bằng EF tiếp xúc với các mặt của hình lập phương trên, gọi F là trung điểm CD thì suy ra CD luôn tiếp xúc với mặt cầu (S)
Từ hình vẽ trên ta cũng suy ra được \(d\left( A;\Delta \right)=AM=a\sqrt{3}\) với M thuộc đường tròn thiết diện qua tâm mặt cầu tiếp xúc với mặt phẳng chứa CD và khoảng cách giữa \(\Delta \) và CD bằng \(M{F}'\) với \(M{F}'\) vuông góc mặt phẳng chứa CD
Suy ra khoảng cách giữa \(\Delta \) và CD lớn nhất bằng \(M{F}'=MJ+J{F}'\) như hình vẽ trên
Từ đây ta có: \(MB=\sqrt{A{{B}^{2}}-MA{{}^{2}}}=\sqrt{{{\left( 2R \right)}^{2}}-MA{{}^{2}}}=\sqrt{{{\left( 2 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}}=1\)
Xét \(\Delta AMB\) vuông tại M có \(MJ\bot AB\) nên ta có: \(\frac{1}{M{{J}^{2}}}=\frac{1}{MA{{}^{2}}}+\frac{1}{MB{{}^{2}}}\) (hệ thức lượng)
Suy ra \(MJ=\frac{MA.MB}{\sqrt{MA{{}^{2}}+MB{{}^{2}}}}=\frac{\sqrt{3}}{2};JF=\frac{AB}{2}=\frac{2}{2}=1\);
Như vậy ta suy ra khoảng cách giữa \(\Delta \) và CD lớn nhất bằng
\(M{F}'=MJ+J{F}'=\frac{\sqrt{3}}{2}+1=\frac{\sqrt{3}+2}{2}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247