Giá trị của tham sô m để phương trình \({x^3} - 3x = 2m + 1\) có ba nghiệm phân biệt là:

Câu hỏi :

Giá trị của tham số m để phương trình \({x^3} - 3x = 2m + 1\) có ba nghiệm phân biệt là:

A. \( - {3 \over 2} < m < {1 \over 2}\)

B. \( - 2 < m < 2\)

C. \( - {3 \over 2} \le m \le {1 \over 2}\)

D. \( - 2 \le m \le 2\).

* Đáp án

A

* Hướng dẫn giải

Xét phương trình hoanh độ giao điểm

\({x^3} - 3x = 2m + 1\)

\(\Leftrightarrow {x^3} - 3x - 1 = 2m\)

Xét \(y = {x^3} - 3x - 1\)

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0 \Leftrightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\end{array}\) 

từ BBT ta có \( - 3 < 2m < 1 \Leftrightarrow \dfrac{{ - 3}}{2} < m < \dfrac{1}{2}\)

Copyright © 2021 HOCTAP247