A. 1,77
B. 3,44
C. 1,51
D. 3,54
D
Phương trình \(\left( C \right): {{x}^{2}}+{{\left( y-3 \right)}^{2}}=5\).
Tọa độ giao điểm của \(\left( P \right)\) và \(\left( C \right)\) là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l} {x^2} + {\left( {y - 3} \right)^2} = 5\\ y = {x^2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y + {\left( {y - 3} \right)^2} = 5\\ y = {x^2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} y = 1\\ y = 4 \end{array} \right.\\ y = {x^2} \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right.\\ \left\{ \begin{array}{l} x = - 1\\ y = 1 \end{array} \right.\\ \left\{ \begin{array}{l} x = - 2\\ y = 4 \end{array} \right.\\ \left\{ \begin{array}{l} x = - 2\\ y = 4 \end{array} \right. \end{array} \right.\)
Vậy tọa độ các giao điểm là \(\left( 1\,;\,1 \right), \left( -1\,;\,1 \right), \left( -2\,;\,4 \right), \left( 2\,;\,4 \right)\).
Ta có: \(S = 2\left( {{S_1} + {S_2}} \right)\).
Tính S1: \({x^2} + {\left( {y - 3} \right)^2} = 5\,\,(C)\,\,\, \Rightarrow y = 3 - \sqrt {5 - {x^2}} \).
\( \Rightarrow {S_1} = \int\limits_0^1 {\left[ {\left( {3 - \sqrt {5 - {x^2}} } \right) - {x^2}} \right]} {\rm{d}}x \approx 0,5075\)
Tính S2: \(\left\{ \begin{array}{l} {x^2} + {\left( {y - 3} \right)^2} = 5\,\,(C)\, \Rightarrow x = \sqrt {5 - {{\left( {y - 3} \right)}^2}} \\ y = {x^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow x = \sqrt y \end{array} \right.\).
\( \Rightarrow {S_2} = \int\limits_1^4 {\left[ {\sqrt {5 - {{\left( {y - 3} \right)}^2}} - \sqrt y } \right]} {\rm{d}}y \approx 1,26\)
Vậy \(S = 2\left( {{S_1} + {S_2}} \right) \approx 3,54\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247