A. 0
B. -15
C. -2
D. -13
D
Đặt: \(t=\sqrt{{{x}^{2}}+5}-x\Rightarrow x=\frac{5-{{t}^{2}}}{2t}\Rightarrow \text{d}x=-\left( \frac{1}{2}+\frac{5}{2{{t}^{2}}} \right)\text{d}t\).
Ta có: \(1=\int\limits_{1}^{5}{f\left( t \right)}\left( \frac{1}{2}+\frac{5}{2{{t}^{2}}} \right)\text{d}t=\frac{1}{2}\int\limits_{1}^{5}{f\left( t \right)}\text{d}t+\frac{5}{2}\int\limits_{1}^{5}{\frac{f\left( t \right)}{{{t}^{2}}}\text{d}t}\)
\(\Rightarrow \frac{1}{2}\int\limits_{1}^{5}{f\left( t \right)}\text{d}t=1-\frac{5}{2}\int\limits_{1}^{5}{\frac{f\left( t \right)}{{{t}^{2}}}\text{d}t}=1-\frac{5}{2}.3=-\frac{13}{2}\)
\(\Rightarrow \int\limits_{1}^{5}{f\left( t \right)}\text{d}t=-13\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247