Cho hai đường thẳng: d: (x - 1)/-1 = (y - 2)/2 = z/3 và d': x = 1 + t' y = 3 - 2t' z = 1

Câu hỏi :

Cho hai đường thẳng: d:x-1-1=y-22=z3 và d'x=1+t'y=3-2t'z=1 Lập phương trình đường vuông góc chung của d và d’.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình tham số của đường thẳng d: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vecto chỉ phương của hai đường thẳng d và d’lần lượt là a = (−1; 2; 3), a' = (1; −2; 0).

Xét điểm M(1 – t; 2 + 2t; 3t) trên d và điểm M’(1 + t’; 3 – 2t’; 1) trên d’ ta có MM' = (t′ + t; 1 − 2t′ − 2t; 1 − 3t).

MM’ là đường vuông góc chung của d và d’.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thay giá trị của t và t’ vào ta được tọa độ M và M’ là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó MM' = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra đường vuông góc chung Δ của d và d’ có vecto chỉ phương u = (2; 1; 0)

Vậy phương trình tham số của là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải SBT Toán 12 Bài 3: Phương trình đường thẳng !!

Số câu hỏi: 27

Copyright © 2021 HOCTAP247