Cho hình chóp tứ giác S.ABCD có đáy là hình vuông tâm O, \(SA=a\sqrt{6}\), SA vuông góc với đáy, mặt phẳng \(\left( SBC \right)\) tạo với đáy góc \(\varphi \) sao cho \(\tan \varph...

Câu hỏi :

Cho hình chóp tứ giác S.ABCD có đáy là hình vuông tâm O, \(SA=a\sqrt{6}\), SA vuông góc với đáy, mặt phẳng \(\left( SBC \right)\) tạo với đáy góc \(\varphi \) sao cho \(\tan \varphi =\sqrt{6}\). Gọi G là trọng tâm tam giác SCD. Tính thể tích khối tứ diện SOGC.

A. \(\frac{{{a^3}\sqrt 6 }}{{36}}\)

B. \(\frac{{{a^3}\sqrt 6 }}{6}\)

C. \(\frac{{{a^3}\sqrt 6 }}{{12}}\)

D. \(\frac{{{a^3}\sqrt 6 }}{{24}}\)

* Đáp án

A

* Hướng dẫn giải

Ta có: \(\left\{ {\begin{array}{*{20}{c}} {BC \bot AB}\\ {BC \bot SA} \end{array}} \right. \Rightarrow BC \bot SB.\)

Như vậy \(\left\{ {\begin{array}{*{20}{c}} {\left( {SBC} \right) \cap (ABCD) = BC}\\ {BC \bot AB}\\ {BC \bot SB} \end{array}} \right.\) \(\Rightarrow \left( {\widehat {\left( {SBC} \right);\left( {ABCD} \right)}} \right) = \left( {\widehat {AB;SB}} \right) = \widehat {SBA} = \varphi .\)

Trong tam giác SAB vuông tại A, \(\tan \varphi =\frac{SA}{AB}\Leftrightarrow \sqrt{6}=\frac{a\sqrt{6}}{AB}\Leftrightarrow AB=a.\)

Gọi I là trung điểm CD, trọng tâm G của tam giác SCD,G thuộc SI.

Có \({{V}_{S.OCI}}=\frac{1}{3}SA.{{S}_{\Delta OIC}}=\frac{1}{3}SA.\frac{1}{2}.IO.IC=\frac{1}{6}.a.\frac{a}{2}.\frac{a}{2}=\frac{{{a}^{3}}}{24}.\)

Khi đó: \(\frac{{{V}_{SOGC}}}{{{V}_{SOIC}}}=\frac{SG}{SI}=\frac{2}{3}\Rightarrow {{V}_{SOGC}}=\frac{2}{3}{{V}_{SOIC}}=\frac{2}{3}\frac{{{a}^{3}}\sqrt{6}}{24}=\frac{{{a}^{3}}\sqrt{6}}{36}.\)

Copyright © 2021 HOCTAP247