Trong không gian Oxyz, cho mặt cầu (S) có phương trình: x^2 + y^2 + z^2

Câu hỏi :

Trong không gian Oxyz, cho mặt cầu (S) có phương trình: x2 + y2 + z2 - 2x - 2y - 4z + 5 = 0

A. Mặt cầu (S) có tâm I(1;1;2) và đường kính có độ dài bằng 2.

B. Phương trình chính tắc của mặt cầu (S) là: (x - 1)2 + (y - 1)2 + (z - 2)2 = 1

C. Diện tích của mặt cầu (S) là π

D. Thể tích của khối cầu (S) là 4π/3

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta viết lại phương trình của (S) dưới dạng chính tắc như sau:

x2 + y2 + z2 - 2x - 2y - 4z + 5 = 0

<=> (x2 - 2x + 1) +(y2 - 2y + 1) + (z2 - 4z + 4) = 1 + 1 + 4 - 5

<=> (x - 1)2 + (y - 1)2 + (z - 2)2 = 1

Vậy khẳng định B đúng.

Mặt cầu (S) có tâm I(1;1;2) và có bán kính R=1, do đó đường kính của (S) là 2R=2.

Vậy khẳng định A đúng.

Thể tích của khối cầu (S) là 43πR3=43π

Vậy khẳng định D đúng.

Diện tích mặt cầu (S) là 4πR2=4π

Vậy khẳng định C sai.

Copyright © 2021 HOCTAP247