Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABC là

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABC là

A. \(V = {a^3}.\)

B. \(V = \frac{{2{a^3}}}{3}.\)

C. \(V = \frac{{\sqrt 2 {a^3}}}{3}.\)

D. \(V = \frac{{{a^3}}}{3}.\)

* Đáp án

D

* Hướng dẫn giải

Gọi H là trung điểm BC.

Ta có \(SH\bot \left( ABC \right)\) và \(SH=\frac{1}{2}BC=a.\)

\({{S}_{\Delta ABC}}=\frac{1}{2}AH.BC=\frac{1}{2}a.2a={{a}^{2}}.\)

Vậy thể tích khối chóp \({{V}_{SABC}}=\frac{1}{3}SH.{{S}_{\Delta ABC}}=\frac{1}{3}.a.{{a}^{2}}=\frac{{{a}^{3}}}{3}.\)

Copyright © 2021 HOCTAP247