Một vật chuyển động trong 6 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị như hình bên dưới. Trong khoảng thời gian 2 giờ từ khi bắt đầu chuyển động, đồ thị là m...

Câu hỏi :

Một vật chuyển động trong 6 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị như hình bên dưới. Trong khoảng thời gian 2 giờ từ khi bắt đầu chuyển động, đồ thị là một phần đường Parabol có đỉnh I(3;9) và có trục đối xứng song song với trục tung. Khoảng thời gian còn lại, đồ thị vận tốc là một đường thẳng có hệ số góc bằng \(\frac{1}{4}.\) Tính quãng đường s mà vật di chuyển được trong 6 giờ?

A. \(\frac{{130}}{3}\left( {km} \right).\)

B. \(9\left( {km} \right).\)

C. \(40\left( {km} \right).\)

D. \(\frac{{134}}{3}\left( {km} \right).\)

* Đáp án

A

* Hướng dẫn giải

+ Vì Parabol đi qua O(0;0) và có toạ độ đỉnh I (3;9) nên thiết lập được phương trình Parabol \(\left( P \right):y=v\left( t \right)=-{{t}^{2}}+6t;\forall t\in \left[ 0;2 \right].\)

+ Sau 2 giờ đầu thì hàm vận tốc có dạng là hàm bậc nhất \(y=\frac{1}{4}t+m\), dựa trên đồ thị ta thấy đi qua điểm có toạ độ (6;9) nên thế vào phương trình hàm số và tìm được \(m=\frac{15}{2}.\)

Nên hàm vận tốc từ giờ thứ 2 đến giờ thứ 6 là \(y=\frac{1}{4}t+\frac{15}{2};\forall t\in \left[ 2;6 \right].\)

+ Quãng đường vật đi được bằng tổng đoạn đường 2 giờ đầu và đoạn đường 4 giờ sau

\(S={{S}_{1}}+{{S}_{2}}=\int\limits_{0}^{2}{\left( -{{t}^{2}}+6t \right)dt}+\int\limits_{2}^{6}{\left( \frac{1}{4}t+\frac{15}{2} \right)dt}=\frac{130}{3}\left( km \right).\)

Copyright © 2021 HOCTAP247