Cho số phức \(z\ne 0\) thoả mãn \(z\sqrt{3z\overline{z}+1}=\left| z \right|\left( 2+6iz \right).\) Mệnh đề nào dưới đây đúng?

Câu hỏi :

Cho số phức \(z\ne 0\) thoả mãn \(z\sqrt{3z\overline{z}+1}=\left| z \right|\left( 2+6iz \right).\) Mệnh đề nào dưới đây đúng?

A. \(\frac{1}{4} < \left| z \right| < \frac{1}{3}.\)

B. \(\frac{1}{3} < \left| z \right| < \frac{1}{2}.\)

C. \(\frac{1}{2} < \left| z \right| < 1.\)

D. \(\left| z \right| < \frac{1}{4}.\)

* Đáp án

A

* Hướng dẫn giải

\(z\sqrt{3z\overline{z}+1}=\left| z \right|\left( 2+6iz \right)\Leftrightarrow z\left( \sqrt{3z\overline{z}+1}-6i\left| z \right| \right)=2\left| z \right|.\)

Ta thấy \(\sqrt{3z\overline{z}+1}-6i\left| z \right|\) là số phức có phần thực là \(\sqrt{3z\overline{z}+1}\) và phần ảo là \(6\left| z \right|.\)

Suy ra \(\left| z \right|\left( \sqrt{3z\overline{z}+1+36{{\left| z \right|}^{2}}} \right)=2\left| z \right|\)

\(\Leftrightarrow 3z\overline{z}+1+36{{\left| z \right|}^{2}}=4\Leftrightarrow 3{{\left| z \right|}^{2}}+1+36{{\left| z \right|}^{2}}=4\Leftrightarrow {{\left| z \right|}^{2}}=\frac{1}{13}\Rightarrow \left| z \right|=\frac{\sqrt{13}}{13}.\)

Copyright © 2021 HOCTAP247