Cho hàm số y = f(x) liên tục trên đoạn \(\left[ \frac{1}{2};2 \right]\) và thoả mãn \(f\left( x \right)+2f\left( \frac{1}{x} \right)=3x;\forall x\in {{\mathbb{R}}^{*}}.\) Tính tích...

Câu hỏi :

Cho hàm số y = f(x) liên tục trên đoạn \(\left[ \frac{1}{2};2 \right]\) và thoả mãn \(f\left( x \right)+2f\left( \frac{1}{x} \right)=3x;\forall x\in {{\mathbb{R}}^{*}}.\) Tính tích phân \(\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}dx}.\)

A. \(I = 4\ln 2 + \frac{{15}}{8}\)

B. \(I = 4\ln 2 - \frac{{15}}{8}\)

C. \(I = \frac{5}{2}\)

D. \(I = \frac{3}{2}\)

* Đáp án

D

* Hướng dẫn giải

Ta có:

\(f\left( x \right)+2f\left( \frac{1}{x} \right)=3x\), chia cả 2 vế cho x ta được \(\frac{f\left( x \right)}{x}+2\frac{f\left( \frac{1}{x} \right)}{x}=3\)

Lấy tích phân 2 vế

\(\int\limits_{\frac{1}{2}}^{2}{\left[ \frac{f\left( x \right)}{x}+2\frac{f\left( \frac{1}{x} \right)}{x} \right]dx}=\int\limits_{\frac{1}{2}}^{2}{3dx}\)

\(\Leftrightarrow \int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}dx+2\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( \frac{1}{x} \right)}{x}dx}=3x\left| \begin{align} & 2 \\ & \frac{1}{2} \\ \end{align} \right.=\frac{9}{2}}\)

Xét \(\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( \frac{1}{x} \right)}{x}dx}\): Đặt \(\frac{1}{x}=t\Rightarrow -\frac{1}{{{x}^{2}}}dx=dt\Rightarrow dx=-\frac{dt}{{{t}^{2}}}.\)

Đổi cận \(\left\{ \begin{align} & x=\frac{1}{2}\Rightarrow t=2 \\ & x=2\Rightarrow t=\frac{1}{2} \\ \end{align} \right..\)

Khi đó \(\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( \frac{1}{x} \right)}{x}dx}=-\int\limits_{2}^{\frac{1}{2}}{\frac{t.f\left( t \right)}{{{t}^{2}}}dt}\Rightarrow \int\limits_{\frac{1}{2}}^{2}{\frac{f\left( \frac{1}{x} \right)}{x}dx}=\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( t \right)}{t}dt=\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}dx.}}\)

Thay vào tích phân ban đầu ta được

\(3\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}dx}=\frac{9}{2}\Rightarrow \int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}dx}=\frac{3}{2}.\)

Copyright © 2021 HOCTAP247