Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nguyễn Văn Trỗi lần 2 Giả sử đồ thị hàm số \(y=\left( {{m}^{2}}+1 \right){{x}^{4}}-2m{{x}^{2}}+{{m}^{2}}+1\) có...

Giả sử đồ thị hàm số \(y=\left( {{m}^{2}}+1 \right){{x}^{4}}-2m{{x}^{2}}+{{m}^{2}}+1\) có 3 điểm cực trị A, B, C với \({{x}_{A}}...

Câu hỏi :

Giả sử đồ thị hàm số \(y=\left( {{m}^{2}}+1 \right){{x}^{4}}-2m{{x}^{2}}+{{m}^{2}}+1\) có 3 điểm cực trị A, B, C với \({{x}_{A}}<{{x}_{B}}<{{x}_{C}}.\) Khi quay tam giác ABC quanh cạnh AC ta được một khối tròn xoay. Giá trị của m để thể tích khối tròn xoay đó lớn nhất thuộc khoảng nào trong các khoảng dưới đây?

A. (-2;0)

B. (0;2)

C. (2;4)

D. (4;6)

* Đáp án

C

* Hướng dẫn giải

Ta có: \({y}'=4\left( {{m}^{2}}+1 \right){{x}^{3}}-4mx=4x\left[ \left( {{m}^{2}}+1 \right){{x}^{2}}-m \right].\)

Cho \(y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \pm \sqrt {\frac{m}{{{m^2} + 1}}} \left( {m > 0} \right) \end{array} \right..\)

Khi m>0 thì đồ thị hàm số có ba điểm cực trị:

\(A\left( -\sqrt{\frac{m}{{{m}^{2}}+1}};-\frac{{{m}^{2}}}{{{m}^{2}}+1}+{{m}^{2}}+1 \right),B\left( 0;{{m}^{2}}+1 \right),C\left( \sqrt{\frac{m}{{{m}^{2}}+1}};-\frac{{{m}^{2}}}{{{m}^{2}}+1}+{{m}^{2}}+1 \right).\)

Tam giác ABC cân tại B, gọi I là trung điểm của AC.

Khi đó \(BI=\frac{{{m}^{2}}}{{{m}^{2}}+1}.\)

Khi quay tam giác ABC quay quanh AC thì được khối tròn xoay có thể tích là:

\(V=2.\frac{1}{3}.\pi {{r}^{2}}h=\frac{2}{3}\pi B{{I}^{2}}.IC=\frac{2}{3}\pi {{\left( \frac{{{m}^{2}}}{{{m}^{2}}+1} \right)}^{2}}\sqrt{\frac{m}{{{m}^{2}}+1}}=\frac{2}{3}\pi \sqrt{\frac{{{m}^{9}}}{{{\left( {{m}^{2}}+1 \right)}^{5}}}}\)

Xét hàm số \(f\left( m \right)=\frac{{{m}^{9}}}{{{\left( {{m}^{2}}+1 \right)}^{5}}}\), ta có \({f}'\left( m \right)=\frac{{{m}^{8}}\left( 9-{{m}^{2}} \right)}{{{\left( {{m}^{2}}+1 \right)}^{6}}}\], với \[m>0.\)

Cho \({f}'\left( m \right)=0\Rightarrow m=3\left( m>0 \right).\)

Bảng biến thiên của hàm số y = f(m):

Từ bảng biến thiên ta có \(\max f\left( m \right)=f\left( 3 \right).\) Vậy thể tích lớn nhất khi \(m=3\in \left( 2;4 \right).\)

Copyright © 2021 HOCTAP247