A. (-2;0)
B. (0;2)
C. (2;4)
D. (4;6)
C
Ta có: \({y}'=4\left( {{m}^{2}}+1 \right){{x}^{3}}-4mx=4x\left[ \left( {{m}^{2}}+1 \right){{x}^{2}}-m \right].\)
Cho \(y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \pm \sqrt {\frac{m}{{{m^2} + 1}}} \left( {m > 0} \right) \end{array} \right..\)
Khi m>0 thì đồ thị hàm số có ba điểm cực trị:
\(A\left( -\sqrt{\frac{m}{{{m}^{2}}+1}};-\frac{{{m}^{2}}}{{{m}^{2}}+1}+{{m}^{2}}+1 \right),B\left( 0;{{m}^{2}}+1 \right),C\left( \sqrt{\frac{m}{{{m}^{2}}+1}};-\frac{{{m}^{2}}}{{{m}^{2}}+1}+{{m}^{2}}+1 \right).\)
Tam giác ABC cân tại B, gọi I là trung điểm của AC.
Khi đó \(BI=\frac{{{m}^{2}}}{{{m}^{2}}+1}.\)
Khi quay tam giác ABC quay quanh AC thì được khối tròn xoay có thể tích là:
\(V=2.\frac{1}{3}.\pi {{r}^{2}}h=\frac{2}{3}\pi B{{I}^{2}}.IC=\frac{2}{3}\pi {{\left( \frac{{{m}^{2}}}{{{m}^{2}}+1} \right)}^{2}}\sqrt{\frac{m}{{{m}^{2}}+1}}=\frac{2}{3}\pi \sqrt{\frac{{{m}^{9}}}{{{\left( {{m}^{2}}+1 \right)}^{5}}}}\)
Xét hàm số \(f\left( m \right)=\frac{{{m}^{9}}}{{{\left( {{m}^{2}}+1 \right)}^{5}}}\), ta có \({f}'\left( m \right)=\frac{{{m}^{8}}\left( 9-{{m}^{2}} \right)}{{{\left( {{m}^{2}}+1 \right)}^{6}}}\], với \[m>0.\)
Cho \({f}'\left( m \right)=0\Rightarrow m=3\left( m>0 \right).\)
Bảng biến thiên của hàm số y = f(m):
Từ bảng biến thiên ta có \(\max f\left( m \right)=f\left( 3 \right).\) Vậy thể tích lớn nhất khi \(m=3\in \left( 2;4 \right).\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247