Biết hai đồ thị hàm số \(y={{x}^{3}}+{{x}^{2}}-2\) và \(y=-{{x}^{2}}+x\) cắt nhau tại ba điểm phân biệt \(A,\,B,\,C\). Khi đó diện tích tam giác ABC bằng

Câu hỏi :

Biết hai đồ thị hàm số \(y={{x}^{3}}+{{x}^{2}}-2\) và \(y=-{{x}^{2}}+x\) cắt nhau tại ba điểm phân biệt \(A,\,B,\,C\). Khi đó diện tích tam giác ABC bằng

A. 4

B. 3

C. 5

D. 6

* Đáp án

B

* Hướng dẫn giải

Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:

\({x^3} + {x^2} - 2 = - {x^2} + x \Leftrightarrow {x^3} + 2x - x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = - 1\\ x = - 2 \end{array} \right.\)

Khi đó \(A( - 2;\, - 6)\,;\,\,B(1;\,0)\,;\,\,C( - 1;\, - 2)\) suy ra \(AB = \sqrt {45} ;\,\,BC = \sqrt 8 ;\,\,AC = \sqrt {17} \)

Áp dụng công thức hê rông ta có \({S_{ABC}} = 3\)

Copyright © 2021 HOCTAP247