Giá trị nhỏ nhất của hàm số \(y={{x}^{3}}-2{{x}^{2}}-4x+5\) trên đoạn \(\left[ 1\,;\,3 \right]\) bằng

Câu hỏi :

Giá trị nhỏ nhất của hàm số \(y={{x}^{3}}-2{{x}^{2}}-4x+5\) trên đoạn \(\left[ 1\,;\,3 \right]\) bằng

A. 0

B. 2

C. -3

D. 3

* Đáp án

C

* Hướng dẫn giải

Ta có \({y}'=3{{x}^{2}}-4x-4\). Xét trên đoạn \(\left[ 1\,;\,3 \right]\).

\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 2\;\;\left( N \right)}\\ {x = - \frac{2}{3}\left( L \right)} \end{array}} \right.\)

Ta có \(y\left( 1 \right)=0, y\left( 2 \right)=-3, y\left( 3 \right)=2\).

Vậy \(\underset{\left[ 1\,;\,3 \right]}{\mathop{\min }}\,y=-3\).

Copyright © 2021 HOCTAP247