Cho hàm số có \({f}'\left( x \right)\) và \({f}''\left( x \right)\) liên tục trên \(\mathbb{R}\). Biết \({f}'\left( 2 \right)=4\) và \({f}'\left( -1 \right)=-2,\) tính \(\int\limit...

Câu hỏi :

Cho hàm số có \({f}'\left( x \right)\) và \({f}''\left( x \right)\) liên tục trên \(\mathbb{R}\). Biết \({f}'\left( 2 \right)=4\) và \({f}'\left( -1 \right)=-2,\) tính \(\int\limits_{-1}^{2}{{f}''\left( x \right)\text{d}x}\)

A. -8

B. -6

C. 6

D. 2

* Đáp án

C

* Hướng dẫn giải

\(\int\limits_{ - 1}^2 {f''\left( x \right){\rm{d}}x}  = \left. {f'\left( x \right)} \right|_{ - 1}^2 = f'\left( 2 \right) - f'\left( { - 1} \right) = 4 - \left( { - 2} \right) = 6\)

Copyright © 2021 HOCTAP247