Cho hàm số \(f\left( x \right)={{x}^{4}}\). Hàm số \(g\left( x \right)=f'\left( x \right)-3{{x}^{2}}-6x+1\) đạt cực tiểu, cực đại lần lượt tại \({{x}_{1}},\text{ }{{\text{x}}_{2}}\...

Câu hỏi :

Cho hàm số \(f\left( x \right)={{x}^{4}}\). Hàm số \(g\left( x \right)=f'\left( x \right)-3{{x}^{2}}-6x+1\) đạt cực tiểu, cực đại lần lượt tại \({{x}_{1}},\text{ }{{\text{x}}_{2}}\). Tính \(m=g\left( x{{  }_{1}} \right)g\left( {{x}_{2}} \right)\).

A. \(m = \frac{1}{{16}}\)

B. m = -11

C. m = 0

D. \(m = \frac{-371}{{16}}\)

* Đáp án

B

* Hướng dẫn giải

Theo bài ra ta có \(f'\left( x \right)=4{{x}^{3}}\).

Suy ra \(g\left( x \right)=4{{x}^{3}}-3{{x}^{2}}-6x+1\).

Suy ra \(g'\left( x \right)=12{{x}^{2}}-6x-6=0\Leftrightarrow \left[ \begin{align} & {{x}_{1}}=1 \\ & {{x}_{2}}=-\frac{1}{2} \\ \end{align} \right.\)

Đồ thị hàm số lên - xuống – lên.

Hàm số \(g\left( x \right)=f'\left( x \right)-3{{x}^{2}}-6x+1\) đạt cực tiểu, cực đại lần lượt tại \({{x}_{1}}=1,\text{ }{{\text{x}}_{2}}=-\frac{1}{2}\).

Suy ra \(m=g\left( 1 \right).g\left( 2 \right)=\left( 4-3-6+1 \right)\left[ 4.{{\left( \frac{-1}{2} \right)}^{3}}-3.{{\left( \frac{-1}{2} \right)}^{2}}-6.\left( \frac{-1}{2} \right)+1 \right]=-11\).

Copyright © 2021 HOCTAP247