Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nguyễn Văn Cừ lần 2 Trong không gian Oxyz, cho đường thẳng \(d:\,\frac{x+3}{2}=\frac{y+1}{1}=\frac{z}{-1}\) và mặt...

Trong không gian Oxyz, cho đường thẳng \(d:\,\frac{x+3}{2}=\frac{y+1}{1}=\frac{z}{-1}\) và mặt phẳng \(\left( P \right):\,x+y-3z-2=0\). Gọi d' là đường thẳng nằm trong mặt phẳng \(...

Câu hỏi :

Trong không gian Oxyz, cho đường thẳng \(d:\,\frac{x+3}{2}=\frac{y+1}{1}=\frac{z}{-1}\) và mặt phẳng \(\left( P \right):\,x+y-3z-2=0\). Gọi d' là đường thẳng nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với d. Đường thẳng d' có phương trình là

A. \(\frac{{x + 1}}{2} = \frac{y}{5} = \frac{{z + 1}}{1}\)

B. \(\frac{{x + 1}}{{ - 2}} = \frac{y}{5} = \frac{{z + 1}}{1}\)

C. \(\frac{{x + 1}}{{ - 2}} = \frac{y}{5} = \frac{{z + 1}}{{ - 1}}\)

D. \(\frac{{x + 1}}{{ - 2}} = \frac{y}{{ - 5}} = \frac{{z + 1}}{1}\)

* Đáp án

B

* Hướng dẫn giải

Phương trình tham số của \(d:\,\,\left\{ \begin{array}{l} x = - 3 + 2t\\ y = - 1 + t\\ z = \,\,\,\,\,\,\,\,\, - t \end{array} \right.\)

Tọa độ giao điểm của d và \(\left( P \right)\) là nghiệm của hệ:

\(\left\{ \begin{array}{l} x = - 3 + 2t\\ y = - 1 + t\\ z = \,\,\,\,\,\,\,\,\, - t\\ x + y - 3z - 2 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - 3 + 2t\\ y = - 1 + t\\ z = \,\,\,\,\,\,\,\,\, - t\\ - 3 + 2t - 1 + t + 3t - 2 = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} t = 1\\ x = - 1\\ y = 0\\ z = - 1 \end{array} \right. \Rightarrow d \cap \left( P \right) = M\left( { - 1;\,0;\, - 1} \right)\).

Vì d' nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với d nên d' đi qua M và có véc tơ chỉ phương \({{\overrightarrow{u}}_{d'}}={{\overrightarrow{n}}_{P}}\wedge {{\overrightarrow{u}}_{d}}=\left( 2;\,-5;\,-1 \right)\) hay d' nhận véc tơ \(\overrightarrow{v}=\left( -2;\,5;\,1 \right)\) làm véc tơ chỉ phương.

Phương trình của d': \(\frac{x+1}{-2}=\frac{y}{5}=\frac{z+1}{1}\).

Copyright © 2021 HOCTAP247