Cho hai số thực \(x,\,y\) thỏa mãn \(2x+1+\left( 1-2y \right)i=2\left( 2-i \right)+yi-x\) với i là đơn vị ảo. Khi đó giá trị của \({{x}^{2}}-3xy-y\) bằng

Câu hỏi :

Cho hai số thực \(x,\,y\) thỏa mãn \(2x+1+\left( 1-2y \right)i=2\left( 2-i \right)+yi-x\) với i là đơn vị ảo. Khi đó giá trị của \({{x}^{2}}-3xy-y\) bằng

A. -1

B. -3

C. 1

D. -2

* Đáp án

B

* Hướng dẫn giải

Ta có \(2x + 1 + \left( {1 - 2y} \right)i = 2\left( {2 - i} \right) + yi - x \Leftrightarrow 2x + 1 + \left( {1 - 2y} \right)i = 4 - x + \left( {y - 2} \right)i\)

\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {2x + 1 = 4 - x}\\ {1 - 2y = y - 2} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {x = 1}\\ {y = 1} \end{array}} \right.\)

Thay \(\left\{ \begin{matrix} x=1 \\ y=1 \\ \end{matrix} \right.\) vào ta có \({{x}^{2}}-3xy-y=-3\).

Copyright © 2021 HOCTAP247