Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 1 \right)=3\) và \(x\left( 4-f'\left( x \right) \right)=f\left( x \right)-1\) với mọi x>0. Tính \(f\left( 2 \right)\).

Câu hỏi :

Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 1 \right)=3\) và \(x\left( 4-f'\left( x \right) \right)=f\left( x \right)-1\) với mọi x>0. Tính \(f\left( 2 \right)\).

A. 5

B. 2

C. 3

D. 6

* Đáp án

A

* Hướng dẫn giải

Từ giả thiết \(x\left( 4-f'\left( x \right) \right)=f\left( x \right)-1\Rightarrow x.{f}'\left( x \right)+f\left( x \right)=4x+1\Leftrightarrow {{\left[ xf\left( x \right) \right]}^{\prime }}=4x+1\).

\(\Rightarrow \int\limits_{1}^{2}{{{\left[ xf\left( x \right) \right]}^{\prime }}\text{d}x}=\int\limits_{1}^{2}{\left( 4x+1 \right)\text{d}x}\Leftrightarrow \left. xf\left( x \right) \right|_{1}^{2}=\left. \left( 2{{x}^{2}}+x \right) \right|_{1}^{2}\).

\(\Leftrightarrow 2f\left( 2 \right)-f\left( 1 \right)=7\Rightarrow f\left( 2 \right)=\frac{7+f\left( 1 \right)}{2}=\frac{7+3}{2}=5\).

Copyright © 2021 HOCTAP247