Ông An có một khu vườn giới hạn bởi đường parabol và đường thẳng. Nếu đặt trong hệ tọa độ Oxy như hình vẽ thì parabol có phương trình \(y={{x}^{2}}\) và đường thẳng là y=25. Ông An...

Câu hỏi :

Ông An có một khu vườn giới hạn bởi đường parabol và đường thẳng. Nếu đặt trong hệ tọa độ Oxy như hình vẽ thì parabol có phương trình \(y={{x}^{2}}\) và đường thẳng là y=25. Ông An dự định dung một mảnh vườn nhỏ được chia từ khu vườn bởi đường thẳng đi qua điểm O và M trên parabol để trồng một loại hoa. Hãy giúp ông An xác định điểm M bằng cách tính độ dài OM để diện tích mảnh vườn nhỏ bằng \(\frac{9}{2}\).

A. OM = 10

B. \(OM = 2\sqrt 5 \)

C. OM = 15

D. \(OM = 3\sqrt {10} \)

* Đáp án

D

* Hướng dẫn giải

Do parabol có tính đối xứng qua trục tung nên ta có thể giả sử \(M(a;\,{{a}^{2}})\,\,\left( 0<a<5 \right)\)

Suy ra pt đường thẳng y=ax.

Từ đồ thị, ta có diện tích mảnh vườn trồng hoa: \(S=\int\limits_{0}^{a}{\left( ax-{{x}^{2}} \right)}dx\)

\(\left. \left( \frac{a{{x}^{2}}}{2}-\frac{{{x}^{3}}}{3} \right) \right|_{0}^{a}=\frac{9}{2}\Leftrightarrow \frac{{{a}^{3}}}{6}=\frac{9}{2}\Leftrightarrow a=3\Rightarrow M\left( 3;9 \right)\)

\(\Rightarrow OM=\sqrt{M{{H}^{2}}+O{{H}^{2}}}=\sqrt{{{3}^{2}}+{{9}^{2}}}=3\sqrt{10}\)

Copyright © 2021 HOCTAP247