Số nghiệm của phương trình \({{\log }_{2}}\left( {{x}^{2}}\,-\,\,x\,+\,2 \right)=1\) là

Câu hỏi :

Số nghiệm của phương trình \({{\log }_{2}}\left( {{x}^{2}}\,-\,\,x\,+\,2 \right)=1\) là

A. 0

B. 3

C. 1

D. 2

* Đáp án

D

* Hướng dẫn giải

Theo giả thiết ta có:

\({\log _2}\left( {{x^2}\, - \,\,x\, + \,2} \right) = 1\, \Leftrightarrow \,{x^2}\, - \,\,x\, + \,2\, = \,{2^1} \Leftrightarrow \,{x^2}\, - \,\,x\, + \,2\, - \,2\, = \,0\)

\( \Leftrightarrow \,{x^2}\, - \,\,x\,\, = \,0 \Leftrightarrow \,\left[ \begin{array}{l} x\,\, = \,0\\ x\,\, = \,1 \end{array} \right.\)

Vậy phương trình đã cho có hai nghiệm phân biệt

Copyright © 2021 HOCTAP247